

Visual scene real-time analysis for Intelligent Vehicles:

Objects visual detection and recognition / categorization

> Pr. Fabien MOUTARDE Center for Robotics, MINES ParisTech PSL Université Paris

Fabien.Moutarde@mines-paristech.fr http://people.mines-paristech.fr/fabien.moutarde

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019

Outline

- Motivations: ADAS and autonomous driving
- Objects visual DETECTION
- Objects visual RECOGNITION:
 - usual features used
 - Machine-Learning algorithms
- Traffic Sign Detection and Recognition (TSR)
- Cars & Pedestrians detection with adaBoost

PSL *** * Ingredients * * of an Autonomous Vehicle**

Robot → perceive + reason + act

An Autonomous Vehicle therefore needs:

– Sensors

MINES ParisTech

- « Intelligents » algorithms
 - for perception
 - for trajectory planning
 - for control
- Embedded calculator(s)
- Actuators (« drive by wire »)

All these videos = research conducted @ center for Robotics of MINES ParisTech

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019

PSL 🖈

What are ADAS?

Acronym of <u>A</u>dvanced <u>D</u>riving <u>A</u>ssistance <u>Systems</u> = Intelligent functions for safer and/or easier driving

Warning or Information

 Lane Departure Warning (LDW)
 Forward Collision Warning (FCW)
 Pedestrian Collision Warning
 Blind Spot Monitoring
 Speed Limit Assistant
 Driver Attention Warning
 Night vision

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019 10

- Road lanes
- <u>Traffic signs</u>
- <u>Traffic lights</u>
- <u>Cars</u>, vans, trucks

PSL 🖈

- Motorbikes
- Bicycles
- <u>Pedestrians</u>
- etc...

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019 11

Summary on MOTIVATIONS

- Intelligent functions for safer and/or easier driving are called ADAS (= <u>Advanced Driving Assistance Systems</u>)
- There are several different types of ADAS, such as Forward Collision Warning (FCW), Blind Spot Monitoring (BSM), Lane Keeping, Adaptive Cruise Control (ACC), Automated Parking, etc
- Many of these ADAS, and automated driving, requires real-time on-board analysis of video from cameras, in order to interpret ("understand") the visual scene, and in particular to detect and categorize in the images objects such as: cars, pedestrians, bicycles, motorbikes, traffic signs and traffic lights

- Motivations: ADAS and autonomous driving
- Objects visual DETECTION
- Objects visual RECOGNITION:
 - usual features used
 - Machine-Learning algorithms
- Traffic Sign Detection and Recognition (TSR)
- Cars & Pedestrians detection with adaBoost

Visual <u>detection</u> can be done using:

- Template matching
- Shape cues
- Color cues
- Window scanning with classifier
- Keypoints
- Segmentation

PSL 🖈

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 15

Ρ

Objects visual <u>detection</u> by TEMPLATE MATCHING

Mostly for detection of <u>nearly invariant patterns</u> (like *traffic signs*)

 <u>Principle:</u> compare a reference image (template) of object with all possible positions/sizes (cross-correlation)

For each position compute a similarity measure (e.g. SAD) \rightarrow « heatmap » $SAD(x,y) = \sum_{i=0}^{T_{rows}} \sum_{i=0}^{T_{cols}} Diff(x+i,y+j,i,j)$

Objects visual <u>detection</u> by COLOR

For objects with <u>standardized</u> (e.g. Traffic Signs) or specific color (e.g. skin)

Principle: ≈ thresholding in color space

[color pixels usually coded as 3 intensities for the 3 primary colors Red, Green and Blue]

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 17

Objects visual <u>detection</u> by SHAPE

For objects with fixed and rather specific shape

- Principle:
 - General case: template-matching on contours image
 - For « simple » shapes (lines, circles, polygons like triangles, rectangles,...) efficiently feasible using <u>Hough transform</u> (center voting by Canny edges) or Radon transform

Problems:

Rather computer-intensive
Some shape are not so rare (rectangles!!)

Multi-scale detection by Window-scanning with classifier

Principle:

- Build a <u>pyramid</u> of *down-sampled* images
- Scan each level of pyramid with a <u>sliding fixed-size</u> <u>detection window</u> → tens of thoussand of sub-images

 Apply a single common classifier on all sub-images to determine if it is a bounding-box around searched object

> Kind of Template-matching using classifier output as similarity measure

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 19

Objects visual <u>detection</u> by KEYPOINTS

<u>Keypoint =</u> « salient » point (e.g. corners, etc)

- Detection by Harris or SIFT or SURF or FAST or ...
- Description by SIFT/SURF/ORB/...

<u>Detector</u> should ideally be « *repeatable* » i.e. select same points whatever the scale, rotation, lighting...

<u>Descriptor</u> should ideally be *invariant under change of scale/rotation/lighting/...*

So that several keypoints can always be matched

Keypoints detectors and descriptors

Very large number of variants of detectors and descriptors successively invented over time

Y

E

A

R

S

<u>Detectors</u> 1988: Harris 1999: SIFT 2006: SURF, FAST 2011: ORB **Descriptors**

1999: SIFT 2006: SURF 2010: BRIEF 2011: ORB

SIFT = <u>S</u>cale <u>Invariant Feature</u> <u>Transform</u> SURF = <u>S</u>peeded <u>Up</u> <u>R</u>obust <u>F</u>eatures FAST = <u>F</u>eatures from <u>A</u>ccelerated <u>S</u>egment <u>T</u>est BRIEF = <u>Binary R</u>obust <u>Independent Elementary F</u>eatures ORB = <u>O</u>riented FAST and <u>R</u>otated <u>B</u>RIEF

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 21

PSL 🖈

SIFT keypoints

Scale Invariant Feature Transform proposed by Lowe in 1999

Detector

Max and mins of Difference of Gaussians (DoG) applied in scale space to a series of smoothed and resampled images.

Descriptor

Summarizes spatial distribution of gradient orientations around keypoint in a 128D vector

<u>Speeded Up Robust Features</u> proposed by Bay et al. in 2006

<u>Detector</u>: approximation with Haar filters of blob detection by determinant of Hessian (\rightarrow speed-up with integral image)

Descriptor: based on Haar filters responses around keypoint

Much faster to compute than SIFT (but « blob » keypoints rather than corners)

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 23

PSL 🖈

Keypoints matching and filtering

- Precompute keypoints
 <u>locations and descriptors</u> on object to find
- Compute keypoints locations and descriptors on « query » (image where we search object)
- Find keypoints in query with descriptors similar to a keypoint in object
- Filter false matches by geometric checking (RANSAC)

dy

dy

Advantage: intrinsicly multi-scale search, thanks to scale invariance of keypoint detector and descriptor Problem: can search/find only a *specific* image pattern

PSL 🖈

If looking for objects of a CATEGORY (rather than a particular pattern/sub-image), need to first build a filter for discriminating keypoints that are specific of the type of searched objects

- Extract keypoints on many examples of each category (car, pedestrian, etc...)
- Train a classifier on a <u>labelled dataset of</u> <u>keypoints descriptors</u>, that predicts category_of_object = f(descriptor)

Summary on visual objects <u>DETECTION</u>

<u>Detection = find WHERE in the image</u> are (maybe) located interesting objects

Detection is a first stage often applied before recognition (which is then applied only on candidate objects output by detection)

Visual objects <u>detection</u> can be done using various types of approaches:

- Template matching
- Shape cues
- Color cues
- Window scanning with classifier
- Keypoints matching

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019 27

PSL 🖈

Outline

- Motivations: ADAS and autonomous driving
- Objects visual DETECTION
- Objects visual RECOGNITION:
 - usual features used
 - Machine-Learning algorithms
- Traffic Sign Detection and Recognition (TSR)
- Cars & Pedestrians detection with adaBoost

PSL Objects visual RECOGNITION

<u>Robust</u> visual recognition requires independance wrt:

Image size

ParisTech

- Centering small offsets
- Rotations (at least small ones)
- Luminosity & contrast
- → Generally NOT input pixels directly into classifier, but rather use « FEATURES » computed on image to be classified

Visual FEATURES

Main feature types:

- Histogram of pixel luminance or color
- ...
- Histogram of Orientations of Gradients (HOG)
- Keypoint descriptors, Bag of Word (BoW)

Luminance or color *Histogram features*

Problems:

- High variability with luminosity/contrast
 normalize (histogram equalization)
 other color space (YUV, HSV, ...)
- Often not sufficiently discriminative

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019 31

PSL The <u>Viola&Jones</u> features for object detection: Haar-like filters

4 rectangular feature types:

- two-rectangles feature types (horizontal/vertical)
- three-rectangles feature type
- four-rectangles feature type

Feature output:

- Σ (pixels in grey rectangles)
 - Σ (pixels in white rectangles)

HOG features

Cell

<u>Histogram of Orientations of Gradients</u> popularized by Dalal & Triggs in 2005

Principle:

- Computation of vertical and horizontal gradients with 1D derivative masks [-1 0 1] and [-1 0 1]^T
- Accumulation (weighted by gradient magnitude) of gradient orientations in cell bins
- Normalization within overlapping blocks

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019 33

Characterize distribution of contours' orientations

Parameters:

- Cell size (in pixels)
- Number of histogram bins for each cell
- Block size (in cells)

Block

Inspired from text analysis in which a piece of text is represented by a sparse vector of the number of occurrences of each word of a dictionary

Adapted to images using <u>keypoints descriptors</u> as a representation of image content:

- descriptor vectors are quantized (usually by K-means partitioning) into a codebook of « visual words »
- An (sub-)image is represented by an histogram of codebook occurences

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 35

- Visual features are characteristics computed on an image to be classified, that describe its content, and will be fed into classifier for recognition
- Common types of visual features include:
 - Histogram of pixel luminance or color
 - Haar-like filters
 - Histogram of Orientations of Gradients (HOG)
 - Keypoint descriptors, Bag of Word (BoW)

- Motivations: ADAS and autonomous driving
- Objects visual DETECTION
- Objects visual RECOGNITION:
 - usual features used
 - Machine-Learning algorithms
- Traffic Sign Detection and Recognition (TSR)
- Cars & Pedestrians detection with adaBoost

• <u>RECOGNITION =</u> <u>determine WHAT are the detected objects</u> (in assign a type/close to each and)

(ie assign a type/class to each one)

- It is therefore a <u>classification task</u>: for traffic sign recognize its type (eg Speed Limit to 50 km/h), and for other objects CATEGORIZE them as car / pedestrian / bicycle etc (or false alarm)
- Classifiers are generally obtained by applying a Machine-Learning algorithm on visual features computed on candidate sub-image (rather than on raw pixels)

Main <u>shallow</u> (ie not-deep) Machine-Learning algorithms used:

- MLP Neural Networks
- Support Vector Machines (SVM)
- Random Forets

PSL 🖈

- Boosting

PSL★ MLP training hyper-parameters

+ momentum*

Architecture:

arisTech

- usually 1 input layer + <u>ONLY 1 hidden layer</u>
 + 1 output layer
- Main parameter: size (number of neurons) of hidden layer

Optimization:

- <u>Type of gradient descent algorithm</u>
- Main parameter for standard gradient: <u>learning step</u>
- Number of iterations

Kernel:

- Type (linear or polynomial or Gaussian)
- Kernel param (degree for polynomial, sigma for Gaussian)

Optimization:

tolerance parameter C !!!

Random Forest

 A Random Forest is a <u>set</u> of N Decision Trees (typically N ~ tens, hundreds or more)

PSL 🖈

MINES ParisTech

- Each Decision Tree is learnt on a <u>≠ random</u> <u>subset of</u> training <u>examples</u>, using only a <u>randomly chosen and</u> <u>small set of coordinates</u>
- The output of the Random Forest is the <u>majority vote by all trees</u>

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 47

RandomForest training hyper-parameters

Size = number of trees

Max-depth of trees

PSL 🖈

MINES 🖈

Randomization:

- <u>% of randomly chosen training examples for each tree</u>
- <u>% of random input coordinates used in each tree</u>

<u>adaBoost principle:</u> weighted vote of a "committee" of "weak classifiers" obtained by successive weightings of examples

adaBoost training hyper-parameters

Weak-Learner: Algo used?

If feature selection, which family (Haar, HOG, controlPoints)?

Number of Weak-Classifiers to assemble

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 51

Comparison of main "shallow" ML algorithms

	MLP Neural Network	SVM	Boosting	Random Forest
Many classes	+			++
Large dimension of input		-		++
Many examples		-		
Easy to train	-	++	+++	
Feature handling			Selection	
Fast recognition		+		++
Robustness to data noise	+	++		++

Choice of a particular ML model/algorithm should ideally be done empirically: try all of them and keep best performing! It can also be influenced by characteristics of training data (# of classes, dimension of input, # of examples), by relative ease of training, and by execution speed of recognition

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 53

PSL Recall and precision formulas

	predicted	predicted		
	as positive	as negative		
positive	TP	FN		
negative	FP	TN		

Recall	Nb of <u>correct</u> positive predictions		TP	
(sensitivity) True Positive ra	te Nb of <i>real</i> positives	' =	TP + FN	
Precision _	Nb of <u>correct</u> positive predictions		TP	
(specificity) =	Nb of positive <i>predictions</i>	T	P + FP	

Classification performance <u>metrics</u>

- <u>Recall (sensitivity)</u> ≈ proportion of « not missed »
 ≈ « exhaustivity » level
- Precision (specificity) ≈ reliability of predicted labels
- <u>Confusion matrix</u>: predicted label v.s. true label

					True positive		Faise positive	
					True negative		False negative	
C.Matrix	1	2	3	4	5	6	ACTUAL	RECALL
1	339	15	5	0	0	0	359	94.43%
2	15	305	14	0	0	0	334	91.32%
3	6	10	242	0	0	0	258	93.80%
4	0	0	0	302	30	0	332	90.96%
5	0	0	0	15	368	0	383	96.08%
6	0	0	0	0	0	394	394	100.00%
PREDICTED	360	330	261	317	398	394	2060	94. <mark>4</mark> 3%
PRECISION	94.17%	92.42%	92.72%	95.27%	92.46%	100.00%	94.5 <mark>1</mark> %	94.66%

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 55

Precision-recall trade-off and curve

- **Classifier C1 predicts better than C2**
- iff C1 has better recall and precision
- + Trade-off between recall and precision

Compare precision-recall <u>curves!</u>

For numeric comparison (or if curves cross each other), <u>Area Under Curve (AUC)</u>

« LEARNING = INFER/APPROXIMATE + GENERALIZE !! »

Given a FINITE set of examples (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) , where $x_i \in \Re^d$ are input vectors, and $y_i \in \Re^s$ are *target output* values, we search a function h that « <u>fits AND GENERALIZE</u> best » the underlying actual function f defined by $y_i = f(x_i) + noise$

⇒ goal = minimize the GENERALIZATION error $E_{gen} = \int ||h(x) - f(x)||^2 p(x) dx$ (where p(x)=probability distribution of x)

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 57

What is « overfitting »?

What can be measured (and minimized!) is only the EMPIRICAL error on examples: $E_{emp} = (\sum_{i} ||h(x_i) - y_i||^2) / n$

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 58

PSL Training methodology: ALWAYS use validation-set or cross-validation!

For maximizing GENERALIZATION (and avoid overfitting), it is essential to choose/optimize all training parameters with VALIDATION:

- either with a separate validation set (random splitting of examples into Training+Validation)
- or with <u>CROSS-VALIDATION:</u>

estimate error on several subsets used as validation (k-fold or « leave-one-out »), then average errors

<u>3-fold cross-validation :</u>

- train on S1US2 and evaluate on S3
- train on S1 \cup S3 and evaluate on S2
- train on S2US3 and evaluate on S1
- Average (errS1, errS2, errS3)

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019 59

S3

S1

MINES ParisTech

> PSL Summary on shallow Machine-Learning algorithms for visual objects recognition

- Visual recognition is generally performed using <u>Machine-Learning (ML)</u> applied on visual features
- ML = Building an empirical (i.e. data-driven) mathematical model, eg for automated classification
- Main <u>shallow</u> ML algorithms used for visual object recognition include:
 - MLP Neural Networks
 - Support Vector Machines (SVM)
 - Random Forests
 - adaBoost

- Motivations: ADAS and autonomous driving
- Objects visual DETECTION
- Objects visual RECOGNITION:
 - usual features used
 - Machine-Learning algorithms
- Traffic Sign Detection and Recognition (TSR)
- Cars & Pedestrians detection with adaBoost

Shape, colors and pictograms ≈ standardized (but national variations & totally different in USA...)

3 main steps:

- Where are traffic signs?
 → <u>Detection</u> by color or/and shape
- What traffic sign is it?
 → Use pattern <u>recognition</u> (→ require use of some Machine-Learning)
- 3. Temporal integration (tracking)
 - → Position prediction, better confidence estimation, and handle temporary occlusions

<u> Main challenges:</u>

- real-time detection (signs are small !)
- robustness to illumination changes

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 63

PSL Traffic Signs DETECTION

- Often done by <u>COLOR THRESHOLDING</u>
 Fast, but poor robustness to illumination changes
- Alternative or complement: <u>SHAPE DETECTION</u> (circles, triangles, rectangles) <u>using Hough</u>
 → robust, and OK even on greyscale, BUT very computer-intensive if ≠ optimized
- Best = using COLOR AND SHAPE
 Color → candidate regions
 Shape detection restricted to those regions

Traffic Sign RECOGNITION (TSR)

- Very little intrinsic variation of object

 → main recognition challenge = <u>robustness to</u> <u>illumination & contrast changes + small 3D rotations</u>
- Large number of classes (~100)
- Input feature for classification?
 - Vector of pixel values??
 - HoG (Histogram of Orientations of Gradients)
 - ...
- ML algo used: Neural Nets, Random Forest, boosting, SVM (but 2 last = BINARY classifiers → less convenient)

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 65

Machine-Learning algorithm used: random forest

Principle: 1/ Grow large (typically 500) set of "random" trees, with each node testing 1 of the 1000-3000 HoG componants (node = best split); 2/ Labels of leaves computed based on most frequent class of training examples ending in it; 3/ <u>Classify by majority vote of trees</u>

Best student paper @ICAR'2011 <u>3rd best competition result:</u> 96,1% (vs 99,5% and 98,3%)

PSL MINES_ParisTech's TSR result

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 67

Outline

- Motivations: ADAS and autonomous driving
- Objects visual DETECTION
- Objects visual RECOGNITION:
 - usual features used
 - Machine-Learning algorithms
- Traffic Sign Detection and Recognition (TSR)
- Cars & Pedestrians detection with adaBoost

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 69

Integral image

PSL 🖈

- **Definition**: The *integral image* at location (x,y), is the sum of the pixel values above and to the left of (x,y), inclusive.
- It can be computed in one single pass with nb_pixels additions.

Using the integral image representation one can compute the value of any rectangular sum in constant time.

For example the integral sum inside rectangle D we can compute as: ii(4) + ii(1) - ii(2) - ii(3)

VERY FAST COMPUTATION of ViolaJones features

PSL Boosting as feature selection (and weighting)

adaBoost = weighted vote by a committee of <u>"weak</u> <u>classifiers"</u> obtained by iterative weightings of examples

→ Final STRONG classifier: $H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Idea of Viola&Jones in 2001: <u>use as weak classifier very</u> <u>simple boolean features selected in a family</u> (e.g. all Haar-like features) \Leftrightarrow Weak Learner = search of feature with

lowest weighted error

Using a 24x24 pixels detection window, with all possible combinations of horizontal&vertical location and scale of Haar, the full set of features has 45,396 ≠ features (and ~10 times more in a 32x32 window) → brute-force <u>exhaustive search</u> possible!

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 71

Speed-up by « Attentional » Cascade

- Simple, boosted classifiers can reject many negative sub-windows and still detect <u>all</u> positive instances
- Cascade of progressively more complex classifiers

 → good detection performance with less processing
 (most negative sub-windows eliminated by simplest
 classifiers at beginning of cascade)

PSL Success story »: now standard face-detection approach

Result of multi-scale window-scanning with strong classifier obtained by boosting of Haar filters (Viola&Jones, 2001)

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019 73

Main families of Weak Classifiers for boosting

• Haar-like (Viola-Jones) = most commonly used features

if |SumPixels(A) - SumPixels(B)| > Threshold then True else False

Relatively fast computation with integral image
 Mostly based on horizontal/vertical contrasts

Some work showed improved results with extended feature set [Treptow & Zell, CEC'2004]

• HOG (Histogram of Oriented Gradient) – based features

[Zhu et al., CVPR'2006, Mitsubishi] [Pettersson et al., IV'2008, NICTA]

- More detailed/discriminative information
- Tricky to make it fast enough
- Not so good results on object classes with too shallow gradients
- Pixel-pairs comparisons

[Baluja et al., ICIP'2004, Google/CMU] [Leyrit et al., IV'2008, LASMEA]

- Extremely low computation time
- **Control-points features** [CAOR/Mines ParisTech work since 2004]

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019 74

Outcome of boosting with ≠ feature families

Typical connected-Control-Points selected during Adaboost training

For comparison, typical Adaboost-selected Haar features

PSL 🖈

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019 75

Example result of car & pedestrian detection with boosting

<u>Cars (from behind)</u> : ~ 95% detection with < 1 false alarm / image

[Research conducted @ center for Robotics of MINES ParisTech]

<u>Pedestrian (daytime)</u> : ~80% detection with < 2 false alarms / image

PSL (Intermediate) Conclusions

Until outbreak in 2013 of Deep-Learning with **Convolutional Neural Networks, state-of-the-art in** real-time visual object detection and recognition or categorization for Intelligent Vehicles was:

- For Traffic Signs, Color and/or Shape detection + Random Forest recognition
- For more complex/variable categories (cars, pedestrians, etc...) boosting selection of weak features, or SVM classification using HOG

These techniques are still those used in most already existing products

NB: in most cases, fusion with information by processing of input from other sensors: radar, lidar, ...

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019

NB: Deep-Learning approaches for visual scene analysis in a separate course