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Outline

•Motivations: ADAS and autonomous driving

•Objects visual DETECTION

•Objects visual RECOGNITION: 

• usual features used

• Machine-Learning algorithms

•Traffic Sign Detection and Recognition (TSR)

•Cars & Pedestrians detection with adaBoost
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A self-driving car is a mobile 
robot! 

Perception

Action

Reasoning

Decision
ROBOTIC 

LOOP
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« Ingredients » of an 
Autonomous Vehicle

An Autonomous Vehicle therefore needs:

– Sensors

– « Intelligents » algorithms
• for perception

• for trajectory planning

• for control

– Embedded calculator(s)

– Actuators (« drive by wire »)

Robot è perceive + reason + act
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Sensors for 
Autonomous Vehicles

• Classic cameras [range ~500m, wide field of view]

• Radar(s)  [range ~200m, narrow field of view]

• LIDAR [range ~100m, FoV from ~60° to 360°]

• Ultrasound, etc…
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Examples of visual objects
detection & recognition for IV

• Traffic Sign detection
and Recognition (TSR)

• Cars and pedestrians visual detection

• Traffic Lights Detection

All these videos = research conducted

@ center for Robotics of MINES ParisTech
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ADAS

Partial, total or conditional
autonomy?

HANDS OFF EYES OFF MIND OFF 

The 5 « automation levels » for vehicles defined by SAE

APPLICABILITY 

CAN BE CONDITIONAL

(e.g. RESTRICTED TO ONLY 

MOTORWAYS, …)

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019      8

What are ADAS?

Acronym of Advanced Driving Assistance Systems  
= Intelligent functions for safer and/or easier driving 

• Warning or Information

• Lane Departure Warning (LDW)

• Forward Collision Warning (FCW)

• Pedestrian Collision Warning

• Blind Spot Monitoring

• Speed Limit Assistant

• Driver Attention Warning
• Night vision
• …
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Active ADAS

• Active systems (ADAS that ACT on the vehicle, 

rather than just only warn the driver)

– Adaptive Cruise Control (ACC)

– Lane Keeping (LK)

– Autonomous Emergency Braking

– Automated Parking

–…

More detailed information: see for instance  
https://mycardoeswhat.org/
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Real-time
visual scene understanding

Key componant for driving assistance (ADAS) 
& automated driving

Strong real-time constraint: 

process at least ~20 frames/second 

car
pedestrian

bicycle

motorbike
traffic signtraffic light

road lane

Main goal = localize and categorize “objects”
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Objects to be detected and 
recognized

• Road lanes

• Traffic signs

• Traffic lights

• Cars, vans, trucks

• Motorbikes

• Bicycles

• Pedestrians

• etc…
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Summary on MOTIVATIONS

• Intelligent functions for safer and/or easier driving are 
called ADAS (= Advanced Driving Assistance Systems)

• There are several different types of ADAS, such as 
Forward Collision Warning (FCW), Blind Spot Monitoring 
(BSM), Lane Keeping, Adaptive Cruise Control (ACC), 
Automated Parking, etc

• Many of these ADAS, and automated driving, requires 
real-time on-board analysis of video from cameras, in 
order to interpret  (“understand”) the visual scene, and in 
particular to detect and categorize in the images objects
such as: cars, pedestrians, bicycles, motorbikes, traffic 
signs and traffic lights
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•Traffic Sign Detection and Recognition (TSR)

•Cars & Pedestrians detection with adaBoost
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Objects visual DETECTION

For objects, visual scene analysis often performed in 

TWO (or three) STEPS: 

Detection = find WHERE in the image
are (maybe) located interesting objects

Candidate locations

for searched objects

Recognized

objects 
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Objects visual detection
approaches

Visual detection can be done using: 

– Template matching

– Shape cues

– Color cues

–Window scanning with classifier

– Keypoints

– Segmentation
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Objects visual detection
by TEMPLATE MATCHING 

Mostly for detection of nearly invariant patterns
(like traffic signs)

• Principle: compare a reference image (template) of object

with all possible positions/sizes (cross-correlation)

For each position compute a similarity measure (e.g. SAD) 

à « heatmap »

Problems: high computation time 

+ handling of luminosity&contrast variations 

+ handling of orientation variation, and of deformation
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Objects visual detection
by COLOR 

For objects with standardized (e.g. Traffic Signs)
or specific color (e.g. skin)

Principle: » thresholding in color space
[color pixels usually coded as 3 intensities for the 3 primary colors Red, Green and Blue]

Red

enhancement

Thresholding Candidate 
bounding boxes

Extract

connected

componants

Filter

Problems:

• sometimes many parasite detections

• high variability of color appearance

(especially in RGB!)
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Objects visual detection
by SHAPE 

For objects with fixed and rather specific shape

• Principle:

– General case: template-matching on contours image

– For « simple » shapes (lines, circles, polygons like 
triangles, rectangles,…) efficiently feasible using  
Hough transform (center voting by Canny edges) or 
Radon transform

Problems:

• Rather computer-intensive

• Some shape are not so rare 

(rectangles!!)
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Multi-scale detection
by Window-scanning with

classifierPrinciple:

• Build a pyramid of down-sampled images

• Scan each level of pyramid with a sliding fixed-size 
detection window è tens of thoussand of sub-images

• Apply a single common classifier on all sub-images to 
determine if it is a bounding-box around searched object

…

Kind of Template-matching using

classifier output as similarity measure
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Objects visual detection
by KEYPOINTS 

Keypoint = « salient » point (e.g. corners, etc)

– Detection by Harris or SIFT or SURF or FAST or …

– Description by SIFT/SURF/ORB/…

Detector should ideally be « repeatable » i.e. select 

same points whatever the scale, rotation, lighting…

Descriptor should ideally be invariant under

change of scale/rotation/lighting/…

So that several keypoints

can always be matched
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Keypoints
detectors and descriptors 

SIFT = Scale Invariant Feature  Transform

SURF = Speeded Up Robust Features

FAST = Features from Accelerated Segment Test

BRIEF = Binary Robust Independent Elementary Features

ORB = Oriented FAST and Rotated BRIEF

Very large number of variants of detectors and 

descriptors successively invented over time 

Descriptors

1999: SIFT

2006: SURF

2010: BRIEF

2011: ORB

…

Detectors

1988: Harris 

1999: SIFT

2006: SURF, FAST

2011: ORB

...

Y 

E 

A 

R 

S
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SIFT keypoints

Scale Invariant Feature Transform

proposed by Lowe in 1999 

scale

x

y

¬ DoG ®

¬
D

o
G

 ®

Summarizes spatial distribution 

of gradient orientations 

around keypoint in a 128D vector

Detector 

Descriptor

Max and mins of Difference of 

Gaussians (DoG) applied in scale 

space to a series of smoothed 

and resampled images.



Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019      23

SURF keypoints

Speeded Up Robust Features
proposed by Bay et al. in 2006

Detector: approximation with Haar filters of blob detection

by determinant of Hessian (à speed-up with integral image)

Descriptor: based on Haar filters

responses around keypoint

Much faster to compute than

SIFT (but « blob » keypoints

rather than corners)
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Keypoints
matching and filtering

• Precompute keypoints

locations and descriptors on 

object to find

• Compute keypoints locations 

and descriptors on « query » 

(image where we search object)

• Find keypoints in query with 

descriptors similar to a 

keypoint in object

• Filter false matches by 

geometric checking (RANSAC) 

Advantage: intrinsicly multi-scale search, thanks to 

scale invariance of keypoint detector and descriptor

Problem: can search/find only a specific image pattern
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Keypoints categorization

• Extract keypoints on many examples of each

category (car, pedestrian, etc…)

• Train a classifier on a labelled dataset of 

keypoints descriptors, that predicts

category_of_object = f(descriptor)

If looking for objects of a CATEGORY (rather than a
particular pattern/sub-image), need to first build a filter
for discriminating keypoints that are specific of the
type of searched objects
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Objects category visual
detection by keypoints

SURF keypoints

Filtering of
CAR keypoints

by classifier

CAR objects
localization

Semantic interpretability of keypoints

+ Potential for multi-categories
simultaneous detection

[Result of research conducted by the center for Robotics of MINES ParisTech]
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Summary on 
visual objects DETECTION

Detection = find WHERE in the image

are (maybe) located interesting objects

Detection is a first stage often applied before 
recognition (which is then applied only on 

candidate objects output by detection)

Visual objects detection can be done using 
various types of approaches: 

– Template matching

– Shape cues

– Color cues

– Window scanning with classifier

– Keypoints matching 
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Objects visual RECOGNITION

Robust visual recognition requires independance

wrt:
• Image size
• Centering small offsets
• Rotations (at least small ones)
• Luminosity & contrast

è Generally NOT input pixels directly into classifier, 

but rather use « FEATURES » computed on image 

to be classified

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019      30

Visual FEATURES

Main feature types:

• Histogram of pixel luminance or color

• …

• Histogram of Orientations of Gradients (HOG) 

• Keypoint descriptors, Bag of Word (BoW)
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Luminance or color
Histogram features

Problems:

• High variability with luminosity/contrast

è normalize (histogram equalization)

è other color space (YUV, HSV, …)

• Often not sufficiently discriminative
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The Viola&Jones features for 
object detection: Haar-like filters

4 rectangular feature types:
– two-rectangles feature types    

(horizontal/vertical)

– three-rectangles feature type

– four-rectangles feature type

Feature output:

S(pixels in grey rectangles) 

- S(pixels in white rectangles) 
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HOG features

Histogram of Orientations of Gradients
popularized by Dalal & Triggs in 2005

Principle:
• Computation of vertical and horizontal gradients with 1D 

derivative masks [-1 0 1] and [-1 0 1]T

• Accumulation (weighted by gradient magnitude) of 

gradient orientations in cell bins

• Normalization within

overlapping blocks
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HOG descriptor details

Parameters:
• Cell size (in pixels)

• Number of histogram bins

for each cell

• Block size (in cells)

Characterize distribution of contours’ orientations
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Bag-of-(visual) Words (BoW)

Adapted to images using
keypoints descriptors as a 
representation of image 
content:

• descriptor vectors are quantized
(usually by K-means partitioning) 
into a codebook of « visual words »

• An (sub-)image is represented by 
an histogram of codebook
occurences

Inspired from text analysis in which a piece of text is

represented by a sparse vector of the number of occurrences 

of each word of a dictionary
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Summary on
VISUAL FEATURES

• Visual features are characteristics 

computed on an image to be classified, that 

describe its content, and will be fed into 

classifier for recognition

• Common types of visual features include:

– Histogram of pixel luminance or color

– Haar-like filters 

– Histogram of Orientations of Gradients (HOG) 

– Keypoint descriptors, Bag of Word (BoW)
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Object visual RECOGNITION / 
CATEGORIZATION

• RECOGNITION = 
determine WHAT are the detected objects

(ie assign a type/class to each one)

• It is therefore a classification task: for traffic sign
recognize its type (eg Speed Limit to 50 km/h), and for
other objects CATEGORIZE them as car / pedestrian /
bicycle etc (or false alarm)

• Classifiers are generally obtained by applying a Machine-
Learning algorithm on visual features computed on
candidate sub-image (rather than on raw pixels)
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What is statistical
Machine-Learning (ML)?

(Statistical) Machine Learning = Building an empirical 
(i.e. data-driven) mathematical model, for automated 
classification, regression, clustering, or behavior rule 

Pedestrians « non-pedestrians »
Pedestrian

recognition 

classifier

For objects visual recognition or categorization

Most simple « Machine-Learning » example: 

Least Squares Linear Regression

= find a and b minimizing K=Si(yi-a.xi-b)2

so that (straight) line y=ax+b fits the points
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Supervised Machine-Learning

Examples (input-output)

(x1,y1), (x2,y2), … , (xn, yn)

H 

(parameterized) family

of mathematical models

Hyper-parameters for

training algorithm

LEARNING

ALGORITHM

(usually based on 

optimization

technique)

hÎH

so that

h(xi)»yi

Optimization methods used by ML include:
Gradient descent
Quadratic programming
Decision tree inference
…
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ML (shallow) algorithms for 
visual object recognition

Main shallow (ie not-deep) Machine-Learning

algorithms used:

– MLP Neural Networks

– Support Vector Machines (SVM)

– Random Forets

– Boosting
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Multi-Layer Neural Networks 
(MLP)
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One neuron

Non-linear transform(Linear combination of inputs)

Free parameters: set of « synaptic weights » Wij

Network: usually 1 input layer + 1 hidden layer + 1 output layer

Main parameter: size of hidden layer

Input: 

vector of 

features

Output: 

typically, 1 per class

(with 1-vs-all encoding, and 

actual values ~ probabilities)

Training: random initialization of Wij weights

+ Iterative gradient descent minimizing error function
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MLP training hyper-parameters

Architecture:

• usually 1 input layer + ONLY 1 hidden layer

+ 1 output layer

• Main parameter: 

size (number of neurons) of hidden layer

Optimization:

• Type of gradient descent algorithm

• Main parameter for standard gradient: learning step

+ momentum*

• Number of iterations
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with            = 

Support 

Vectors

Linear
Support Vector Machines (SVM)

Provide optimal (maximal margin) hyperplane separator

in input space

Linear SVM output:

)(isX

Training: quadratic programming to solve convex optimization

w.xi)

margin
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with            = 

Support 

Vectors

Kernel for non-linear SVM

bXXkh
SN

i

isis   ),(  )(
1

)()( +=å
=

bXNon-linear SVM output:
)(isX

è Training same as linear SVM, with just replacing w.xi by k(w,xi)

k(w,xi)

Classes are often NOT linearly separable. But linear SVM 
can be applied in a transformed space in which classes 
are hopefully linearly separable 

Kernel “trick”: use a transform F(X) implicitly defined by 

F(X1). F(X2)=k(X1,X2) [with k = KERNEL]
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SVM training hyper-parameters

Kernel:

• Type (linear or polynomial or Gaussian)

• Kernel param (degree for polynomial, sigma for Gaussian)

Optimization:

• tolerance parameter C !!!
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Random Forest

• A Random Forest is a set 
of N Decision Trees
(typically N ~ tens, 
hundreds or more)

• Each Decision Tree is
learnt on a ≠ random
subset of training 
examples, using only a 
randomly chosen and 
small set of coordinates

• The output of the 
Random Forest is the 
majority vote by all trees
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RandomForest
training hyper-parameters

Size = number of trees

Max-depth of trees

Randomization: 
• % of randomly chosen training examples for each tree

• % of random input coordinates used in each tree
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Boosting

adaBoost principle: weighted vote of a "committee"
of "weak classifiers" obtained by successive 
weightings of examples

step 1

Decrease (resp. increase) weight of examples correctly 

(resp. incorrectly) classified by last weak classifier 

…

step 2 step 3 Strong classifier

Weighted sum of

elementary classifiers

è Final STRONG classifier:
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Adaptation of example weights:

ä for those incorrectly classified by ht

æ for those correctly classified by ht

è Final STRONG classifier:

adaBoost Algorithm 
[Freund&Schapire 1995]

Weak-Learner
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adaBoost
training hyper-parameters

Weak-Learner:
Algo used?

If feature selection, which family (Haar, HOG, controlPoints)?

Number of Weak-Classifiers to assemble
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Comparison of main 
“shallow” ML algorithms

MLP Neural 

Network
SVM Boosting Random Forest

Many classes + -- -- ++

Large dimension of input - ++

Many examples -

Easy to train - ++ +++

Feature handling Selection

Fast recognition + ++

Robustness to data noise + ++ ++

Choice of a particular ML model/algorithm should ideally be

done empirically: try all of them and keep best performing!

It can also be influenced by characteristics of training data

(# of classes, dimension of input, # of examples), by relative

ease of training, and by execution speed of recognition
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Different types of 
classification errors

False Negatives (« missed ») vs False Positives

Recall: percentage of relevant examples
successfully predicted/retrieved

Precision: percentage of actually relevant 
examples among all those returned by the 
classifier 
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Recall and precision formulas

Nb of correct positive predictions

Nb of real positives
=

TP

TP + FN
(sensitivity)   =

True Positive rate 

Recall

Precision Nb of correct positive predictions

Nb of positive predictions
=

TP

TP + FP=(specificity)
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Classification 
performance metrics

• Recall (sensitivity) » proportion of « not missed » 
» « exhaustivity » level

• Precision (specificity) » reliability of predicted labels

• Confusion matrix: predicted label v.s. true label
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Precision-recall
trade-off and curve

re
c
a
ll

precision

For numeric comparison (or if curves cross each other),

Area Under Curve (AUC)

Classifier C1 predicts better than C2 

iff C1 has better recall and precision

+ Trade-off between recall and precision

è Compare precision-recall

curves!
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Notion and importance of 
GENERALIZATION

« LEARNING = INFER/APPROXIMATE 

+ GENERALIZE !! »

Given a FINITE set of examples (x1,y1), (x2,y2), … , 

(xn, yn), where xiÎÂd are input vectors, and yiÎÂs

are target output values, we search a function h 

that « fits AND GENERALIZE best » the underlying

actual function f defined by yi=f(xi)+noise

Þ goal = minimize the GENERALIZATION error

Egen= ò ||h(x)-f(x)||2 p(x)dx
(where p(x)=probability distribution of x)
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What is « overfitting »?

Fitting a data set to different orders of polynomials 
[from Bishop, "Pattern Recognition and Machine Learning“]

Learning iterationsLearning iterations

Over-fitting detection

for an iterative algorithm

Training set

Validation set

Error

What can be measured (and minimized!) is only the 

EMPIRICAL error on examples: Eemp =( Si ||h(xi)-yi||2 )/n
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Training methodology: ALWAYS use 
validation-set or cross-validation!

For maximizing GENERALIZATION (and avoid
overfitting), it is essential to choose/optimize
all training parameters with VALIDATION:
– either with a separate validation set (random

splitting of examples into Training+Validation)

– or with CROSS-VALIDATION:
estimate error on several subsets used as validation (k-fold
or « leave-one-out »), then average errors

S3

S2

S1

3-fold cross-validation :
• train on S1ÈS2 and evaluate on S3

• train on S1ÈS3 and evaluate on S2

• train on S2ÈS3 and evaluate on S1

• Average (errS1, errS2, errS3)
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Summary on 
shallow Machine-Learning algorithms 

for visual objects recognition

• Visual recognition is generally performed using 

Machine-Learning (ML) applied on visual features

• ML = Building an empirical (i.e. data-driven) 

mathematical model, eg for automated classification

• Main shallow ML algorithms used for visual object 

recognition include:

– MLP Neural Networks

– Support Vector Machines (SVM)

– Random Forests

– adaBoost
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Outline

•Motivations: ADAS and autonomous driving

•Objects visual DETECTION

•Objects visual RECOGNITION: 

• usual features used

• Machine-Learning algorithms

•Traffic Sign Detection and Recognition (TSR)

•Cars & Pedestrians detection with adaBoost
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Traffic Signs

Shape, colors and pictograms » standardized
(but national variations & totally different in USA…)
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Traffic Sign detection and 
Recognition

3 main steps:
1. Where are traffic signs? 

à Detection by color or/and shape

2. What traffic sign is it? 
à Use pattern recognition (à require use of some

Machine-Learning)

3. Temporal integration (tracking) 
à Position prediction, better confidence estimation, 

and handle temporary occlusions

Main challenges: 

• real-time detection (signs are small !)

• robustness to illumination changes
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Traffic Signs DETECTION 

•Often done by COLOR THRESHOLDING 
è fast, but poor robustness to illumination changes 

• Alternative or complement: SHAPE DETECTION 

(circles, triangles, rectangles) using Hough
è robust, and OK even on greyscale,

BUT very computer-intensive if ¹ optimized

• Best = using COLOR AND SHAPE

Color à candidate regions

Shape detection restricted to those regions

64/
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Traffic Sign RECOGNITION 
(TSR)

• Very little intrinsic variation of object
à main recognition challenge = robustness to 

illumination & contrast changes + small 3D rotations

• Large number of classes (~100)

• Input feature for classification?

– Vector of pixel values??

– HoG (Histogram of Orientations of Gradients)

– …

• ML algo used: Neural Nets, Random Forest, 
boosting, SVM (but 2 last = BINARY classifiers à less

convenient)
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MINES_ParisTech’s approach for 
Traffic Sign Recognition (TSR)

German Traffic Sign Recognition 

benchmark (GTSRb)

43 classes, 26640 training images

2569 test images

Gradient

(Sobel)

Histogram of

Orientations of

Gradients (HOG)

Machine-Learning algorithm used: random forest

Principle: 1/ Grow large (typically 500) set of "random" trees, with each
node testing 1 of the 1000-3000 HoG componants (node = best split); 2/ 
Labels of leaves computed based on most frequent class of training 
examples ending in it; 3/ Classify by majority vote of trees

Use set of random trees

Best student paper @ICAR’2011

3rd best competition result: 96,1% (vs 99,5% and 98,3%)

[Work by former PhD student Fatin Zaklouta]
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MINES_ParisTech’s TSR result
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Outline

•Motivations: ADAS and autonomous driving

•Objects visual DETECTION

•Objects visual RECOGNITION: 

• usual features used

• Machine-Learning algorithms

•Traffic Sign Detection and Recognition (TSR)

•Cars & Pedestrians detection with adaBoost



Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019      69

Cars or pedestrians 
visual detection

è Requires LARGE dataset of examples

(N ≥ 103-104 positives + ≥ 104-105 negatives)

pedestrians

Machine-Learning Image classifier

« non-pedestrians »

Main challenge:  very large intra-class variability!!

…

+ Detection by window-scanning è classifier must be FAST
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Integral image 

• Definition: The integral image
at location (x,y), is the sum of 
the pixel values above and to 
the left of (x,y), inclusive.

• It can be computed in one 
single pass with nb_pixels
additions.  

Using the integral image representation

one can compute the value of any

rectangular sum in constant time. 

For example the integral sum inside

rectangle D we can compute as: 

ii(4) + ii(1) – ii(2) – ii(3)

è VERY FAST COMPUTATION of ViolaJones features
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Boosting as feature selection 
(and weighting)

Idea of Viola&Jones in 2001: use as weak classifier very 

simple boolean features selected in a family (e.g. all 

Haar-like features) ó Weak Learner = search of feature with 

lowest weighted error

Using a 24x24 pixels detection window, with all possible

combinations of horizontal&vertical location and scale of Haar,

the full set of features has 45,396 ≠ features (and ~10 times more

in a 32x32 window) è brute-force exhaustive search possible!

adaBoost = weighted vote by a committee of "weak 
classifiers" obtained by iterative weightings of examples 

è Final STRONG classifier:
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Speed-up by 
« Attentional » Cascade

• Simple, boosted classifiers can reject many negative

sub-windows and still detect all positive instances

• Cascade of progressively more complex classifiers

à good detection performance with less processing

(most negative sub-windows eliminated by simplest

classifiers at beginning of cascade)
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« Success story »: now standard 
face-detection approach

Result of multi-scale window-scanning with strong classifier 
obtained by boosting of Haar filters (Viola&Jones, 2001)
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Main families of Weak 
Classifiers for boosting

• Haar-like (Viola-Jones) = most commonly used features

if                                                                       then True

else False

ThresholdBSumPixelsASumPixels >- )()(

C Relatively fast computation with integral image

D Mostly based on horizontal/vertical contrasts

• HOG (Histogram of Oriented Gradient) – based features

C More detailed/discriminative information

D Tricky to make it fast enough

D Not so good results on object classes with too shallow gradients

• Pixel-pairs comparisons

C Extremely low computation time

D Less discriminative è more WC, or more complex classif required

[Zhu et al., CVPR’2006, Mitsubishi] [Pettersson et al., IV’2008, NICTA]

Some work showed improved results with extended feature set [Treptow & Zell, CEC’2004]

[Baluja et al., ICIP’2004, Google/CMU] [Leyrit et al., IV’2008, LASMEA]

• Control-points features [CAOR/Mines ParisTech work since 2004]
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Outcome of boosting 
with ≠ feature families

Typical connected-Control-Points selected during Adaboost training

For comparison, typical Adaboost-selected Haar features
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Example result of car & 
pedestrian detection with

boosting

[Research conducted

@ center for Robotics

of MINES ParisTech]

Cars (from behind) : ~ 95% detection 

with  < 1 false alarm / image

Pedestrian (daytime) : ~80% detection 

with < 2 false alarms / image
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(Intermediate) Conclusions

Until outbreak in 2013 of Deep-Learning with
Convolutional Neural Networks, state-of-the-art in 
real-time visual object detection and recognition or 
categorization for Intelligent Vehicles was:

• For Traffic Signs, Color and/or Shape detection
+ Random Forest recognition

• For more complex/variable categories (cars, 
pedestrians, etc…) boosting selection of weak
features, or SVM classification using HOG

These techniques are still those used in 

most already existing products

NB: in most cases, fusion with information by 
processing of input from other sensors: radar, lidar, …
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NB: Deep-Learning approaches for 

visual scene analysis in a separate course 


