

Visual ego-Localization

Pr. Fabien Moutarde Center for Robotics MINES ParisTech PSL Université Paris

Fabien.Moutarde@mines-paristech.fr

http://people.mines-paristech.fr/fabien.moutarde

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 1

Acknowledgements

During preparation of these slides, I borrowed significant slide content from several sources, in particular:

- Davide Scaramuzza (University of Zurich, Robotics and Perception Group, rpg.ifi.uzh.ch): slides on « Visual Odometry and SLAM » from his IROS'2016 tutorial https://www.rsj.or.jp/databox/international/iros16tutorial_2.pdf
- Juan D. Tardos (Univ. Zaragoza) : slides on « Feature-based visual SLAM » from his ICRA'2016 tutorial <u>http://www.dis.uniroma1.it/~labrococo/tutorial_icra_2016/</u>
- Akihiko Torii (Tokyo Tech) : slides on « Visual place recognition » from his CVPR'2015 tutorial

https://sites.google.com/site/lsvpr2015/placerecognition

Outline

- Definition, motivations, principle & methods overview
- Visual Odometry
- Tracked Features: visual keypoints
- Visual SLAM
- Place visual recognition
- Visual ego-localization with Deep-Learning

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 3

PSL *

- GPS not always available (indoor, tunnels, underground parkings, « urban canyons »)
- GPS precision quite low (up to 10m error ! [except for differential GPS]
- GPS directly provides position but NOT the orientation (only the local orientation of TRAJECTORY can be estimated over time)
- Odometry is quite imprecise (cf. wheel slip!), and subject to large rapid cumulative errors
- Inertial Measurement Unit (IMU) expansive if precise, and subject to cumulative errors

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 5

Visual ego-localization approaches

- Triangulation of visual geo-tagged landmarks
- Visual Odometry
- Visual SLAM
- Place visual recognition
 - + Visual ego-localization by keypoints matching with geo-tagged images

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 7

Outline

- Definition, motivations, principle & methods overview
- Visual Odometry
- Tracked Features: visual keypoints
- Visual SLAM
- Place visual recognition
- Visual ego-localization with Deep-Learning

Visual Odometry (VO) = estimating ego-movement of camera by analysis of the video

Possible only if:

PSL *

- Sufficient overlap between consecutive frames
- Dominance of static scene over moving objects in the Field of View
- Enough texture to allow extraction of apparent motion

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 9

Visual Odometry working principle

1. Compute the relative motion T_k from images I_{k-1} to image I_k

$$T_k = \begin{bmatrix} R_{k,k-1} & t_{k,k-1} \\ 0 & 1 \end{bmatrix}$$

2. Concatenate them to recover the full trajectory

$$C_n = C_{n-1}T_n$$

 An optimization over the last m poses can be done to refine locally the trajectory (Pose-Graph or Bundle Adjustment)

Visual Odometry: estimation of relative motion

Image I_k

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 11

Visual Odometry flow chart

Outline

- Definition, motivations, principle & methods overview
- Visual Odometry
- Tracked Features: visual keypoints
- Visual SLAM
- Place visual recognition

PSL 🖈

Visual ego-localization with Deep-Learning

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 13

Features: visual keypoints

What are Good Features to Track ?

Which of the patches below can be matched reliably?

➔ Choice of keypoints detector is critical !

PSL Visual keypoints DETECTORS

Corners vs Blob Detectors

> A corner is defined as the intersection of one or more edges

- A corner has high localization accuracy
 - Corner detectors are good for VO
- It's less distinctive than a blob
- E.g. Harris, Shi-Tomasi, SUSAN, FAST

- A blob is any other image pattern, which is not a corner, that significantly differs from its neighbors in intensity and texture
 - Has less localization accuracy than a corner
 - Blob detectors are better for place recognition
 - It's more distinctive than a corner
 - E.g., MSER, LOG, DOG (SIFT), SURF, CenSurE

> Descriptor: Distinctive feature identifier

- Standard descriptor: squared patch of pixel intensity values
- Gradient or difference-based descriptors: SIFT, SURF, ORB, BRIEF, BRISK

Davide Scaramuzza - University of Zurich - Robotics and Perception Group - rpg.ifi.uzh.ch

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 15

- > How do we identify corners?
- > We can easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity in at least 2 directions

Davide Scaramuzza - University of Zurich - Robotics and Perception Group - rpg.ifi.uzh.ch

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 16

FAST = Features from Accelerated Segment Test [Rosten et al., PAMI 2010]

- Studies intensity of pixels on circle around candidate pixel C
- C is a FAST corner if a set of N contiguous pixels on circle are:
 - all brighter than intensity_of(C)+theshold, or
 - all darker than intensity_of(C)+theshold

- Typical FAST mask: test for 9 contiguous pixels in a 16-pixel circle
- Very fast detector in the order of 100 Mega-pixel/second

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.cl

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 17

Keypoints DESCRIPTORS for Visual Odometry

BRIEF descriptor [Calonder et. al, ECCV 2010]

Binary Robust Independent Elementary **F**eatures

PSL 🖈

- Goal: high speed (in description and matching)
- **Binary** descriptor formation:
 - Smooth image
 - for each detected keypoint (e.g. FAST),
 - sample 256 intensity pairs $\mathbf{p}=(p_1, p_2)$ within a squared patch around the keypoint
 - for each pair p
 - if $p_1 < p_2$ then set bit **p** of descriptor to 1
 - else set bit p of descriptor to 0
- The pattern is generated randomly only once; then, the same pattern is used for all patches
- Not scale/rotation invariant
- Allows very fast Hamming Distance matching: count the number of bits that are different in the descriptors matched

ORB descriptor

[Rublee et al., ICCV 2011]

- Oriented FAST and Rotated BRIEF
- Alterative to SIFT or SURF, designed for fast computation
- Keypoint detector based on FAST
- > **BRIEF** descriptors are *steered* according to keypoint orientation (to provide rotation invariance)
- Good Binary features are learned by minimizing the correlation on a set of training patches.

Pattern for intensity pair samples

generated randomly

- Definition, motivations, principle & methods overview
- Visual Odometry
- Tracked Features: visual keypoints
- Visual SLAM
- Place visual recognition
- Visual ego-localization with Deep-Learning

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 19

Visual ego-localization using SLAM

- **SLAM = Simultaneous Localization and Mapping**
- Progressive creation of a « local » map within which the localization is computed
- Can be done with vision, but also with other sensor (in particular laser/LIDAR)

Visual Odometry vs Visual SLAM

- > Visual Odometry
 - Focus on incremental estimation/local consistency
- Visual SLAM: Simultaneous Localization And Mapping
 - Focus on globally consistent estimation
 - Visual SLAM = visual odometry + loop detection + graph optimization
- The choice between VO and V-SLAM depends on the tradeoff between performance and consistency, and simplicity in implementation.
- VO trades off consistency for real-time performance, without the need to keep track of all the previous history of the camera.

Visual SLAM

Image courtesy from [Clemente et al., RSS'07]

Davide Scaramuzza - University of Zurich - Robotics and Perception Group - rpg.ifi.uzh.ch

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 21

Feature-based Visual SLAM PSL * arisTech States $\mathbf{x}_{wj} \in \mathbb{R}^3$ Coordinates of point *j* $\mathbf{T}_{iw} \in \mathrm{SE}(3)$ Pose of camera *i* Measurements u_{ij} v_{ij} Observation of point j $\mathbf{u}_{ij} =$ from camera i Reprojection error **Projection Function** $\mathbf{e}_{ij} = \mathbf{u}_{ij} - \pi_i^{\mathbf{F}}(\mathbf{T}_{iw}, \mathbf{x}_{wj})$ From Juan D. Tardos (Univ. Zaragoza) slides

risTech

Projection of point j on camera i

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 23

PSL Minimization of reprojection errors

Find the state values minimizing the reprojection errors:

$$\mathbf{e}_{ij} = \mathbf{u}_{ij} - \pi_i(\mathbf{T}_{iw}, \mathbf{x}_{wj})$$
Bundle Adjustment
$$\{\mathbf{T}_{1w}..\mathbf{T}_{nw}, \mathbf{x}_{w1}..\mathbf{x}_{wm}\}^* = \arg\min_{\mathbf{T},\mathbf{x}} \sum_{i,j} \rho_h(\mathbf{e}_{ij}^T \mathbf{\Sigma}_{ij}^{-1} \mathbf{e}_{ij})$$

$$\Sigma_{ij} = \sigma_{ij}^2 \mathbf{I}_{2\times 2} \quad \text{std. dev. typically = 1 pixel * scale}$$
where
$$\rho_h(\) \text{ robust cost function (i.e. Huber cost) to}$$
downweight wrong matchings
$$\prod_{i=1}^{2} \sigma_{ij}^2 \mathbf{I}_{ij} \mathbf{I}_{ij} \mathbf{I}_{ij}$$
From Juan D. Tardos (Univ. Zaragoza) slides

Bundle Adjustment (BA)

$$\{\mathbf{T}_{1w}..\mathbf{T}_{nw}, \mathbf{x}_{w1}..\mathbf{x}_{wm}\}^{\star} = \arg\min_{\mathbf{T},\mathbf{x}} \sum_{i,j} \rho_h(\mathbf{e}_{ij}^T \boldsymbol{\Sigma}_{ij}^{-1} \mathbf{e}_{ij})$$

- The problem is sparse
 - Not all cameras see all points!
- · But still not feasible in real time
 - example: 1k images and 100k points → 1s per LM iteration
- · Local BA or sliding-window BA
- · BA requires very good initial solutions

From Juan D. Tardos (Univ. Zaragoza) slides

- EKF approach
 - Only keeps the last pose
 - $O(n^2)$ with the number of features
 - Limited to 200-300 features in real-time
- Keyframe approach (PTAM)
 - Uses only a few keyframes for map estimation with non-linear optimization
 - Can handle thousands of points
 - Given the same computational effort is more precise than EKF-SLAM

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 25

Choice of features (keypoints type)

Detector	Descriptor	Rotation Invariant	Automatic Scale	Accuracy	Relocation & Loops	Efficiency
Harris	Patch	No	No	++++	-	++++
Shi-Tomasi	Patch	No	No	++++	<u> </u>	++++
SIFT	SIFT	Yes	Yes	++	++++	+
SURF	SURF	Yes	Yes	++	++++	++
FAST	BRIEF	No	No	+++	+++	++++
ORB	ORB	Yes	No	+++	+++	++++

From Juan D. Tardos (Univ. Zaragoza) slides

As for Visual Odometry, usual SIFT or SURF are clearly not the best choice!

Feature matching

- Compare descriptors
- Spurious matchings
- Least-squares is very sensitive to spurious data
- A single spurious match may to ruin the estimation

➔ Search for consensus with a robust technique: RANSAC

From Juan D. Tardos (Univ. Zaragoza) slides

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 27

RANSAC

- General statistical method for robust estimation
 in presence of outliers
- Principle: iterate the steps below
 - randomly select a subset of points to estimate a model
 - compute the # of other points compatible with the model
 - If enough inliers, re-estimate model with all, and compute error
 - If lower than current-best, replace it with new model (& inliers)

Loop closing problem

SLAM is working, and you come back to a previously mapped area

- Loop detection: to avoid map duplication
- > Loop correction: to compensate the accumulated drift

Requires a place recognition technique

Place recognition also necessary for relocation (« kidnapped robot » problem, ...)

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 29

Outline

- Definition, motivations, principle & methods overview
- Visual Odometry
- Tracked Features: visual keypoints
- Visual SLAM
- Place visual recognition
- Visual ego-localization with Deep-Learning

Coarse visual localization

Query Image

Geo-tagged database images

From Akihiro Torii (Tokyo Tech) slides

➔ This is an Image Retrieval particular case

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 31

PSL *

Inspired from text analysis in which a piece of text is represented by a sparse vector of the number of occurrences of each word of a dictionary

Adapted to images using <u>keypoints descriptors</u> as a representation of image content:

- descriptor vectors are quantized (usually by K-means partitioning) into a codebook of « visual words
- An (sub-)image is represented by an histogram of codebook occurences

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 33

Image description

- 1. Feature detection & description, e.g. SIFT
- 2. Represent the set of features
 - as a sparse histogram (BoVW)
 - as an aggregated vectors (VLAD, FV)

From Akihiro Torii (Tokyo Tech) slides

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 35

Computing BoVW sparse histogram for an image

For each image,

- I. we assign features to the visual word closest in the feature space.
- 2. we build a histogram by voting.

= Term Frequency-Inverse Document Frequency

For a term i in document j:

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 tf_{ij} = number of occurrences of *i* in *j* df_i = number of documents containing *i* N = total number of documents

Giving larger weights to uncommon words

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 37

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 38

From Akihiro Torii (Tokyo Tech) slides

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 39

Re-ranking MINES PSL * Paristech* PSL *

- Generate tentative matches of features
- Verify the tentative matches by fitting geometric transformations (affine, homography, ...), i.e. RANSAC
- Re-rank the shortlisted images by the number of verified matches

From Akihiro Torii (Tokyo Tech) slides

- Estimation of translation+rotation by multiple matches of keypoint descriptors (SIFT, SURF, ORB, vLAD, ...) between query and match
- Requires elimination of outliers by RANSAC

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 41

Outline

- Definition, motivations, principle & methods overview
- Visual Odometry
- Tracked Features: visual keypoints
- Visual SLAM
- Place visual recognition
- Visual ego-localization with Deep-Learning

By <u>removing last layer(s)</u> (those for classification) of a convNet trained on ImageNet, one obtains a <u>transformation of any</u> <u>input image into a semi-abstract representation</u>, which can be used for learning SOMETHING ELSE (« <u>transfer learning</u> ») by creating new convNet output and perform <u>learning of</u> <u>new output layers + fine-tuning of re-used layers</u>

PoseNet training data and test results

training data in green, test data in blue, PoseNet results in red

Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 45

Figure 4: Map of dataset showing training frames (green), testing frames (blue) and their predicted camera pose (red). The testing sequences are distinct trajectories from the training sequences and each scene covers a very large spatial extent.

	# Frames		Spatial	SCoRe Forest	Dist. to Conv.		
Scene	Train	Test	Extent (m)	(Uses RGB-D)	Nearest Neighbour	PoseNet	Dense PoseNet
King's College	1220	343	140 x 40m	N/A	3.34m, 2.96°	1.92m, 2.70°	1.66m, 2.43°
Street	3015	2923	500 x 100m	N/A	1.95m, 4.51°	3.67m, 3.25°	2.96m, 3.00°
Old Hospital	895	182	50 x 40m	N/A	5.38m, 4.51°	2.31m, 2.69°	2.62m, 2.45°
Shop Façade	231	103	35 x 25m	N/A	2.10m, 5.20°	1.46m, 4.04°	1.41m, 3.59°
St Mary's Church	1487	530	80 x 60m	N/A	4.48m, 5.65°	2.65m, 4.24°	2.45m, 3.98°
Chess	4000	2000	3 x 2 x 1m	0.03m, 0.66°	0.41m, 5.60°	0.32m, 4.06°	0.32m, 3.30°
Fire	2000	2000	2.5 x 1 x 1m	0.05m, 1.50°	0.54m, 7.77°	0.47m, 7.33°	0.47m, 7.02°
Heads	1000	1000	2 x 0.5 x 1m	0.06m, 5.50°	0.28m, 7.00°	0.29m, 6.00°	0.30m, 6.09°
Office	6000	4000	2.5 x 2 x 1.5m	0.04m, 0.78°	0.49m, 6.02°	0.48m, 3.84°	0.48m, 3.62°
Pumpkin	4000	2000	2.5 x 2 x 1m	0.04m, 0.68°	0.58m, 6.08°	0.47m, 4.21°	0.49m, 4.06°
Red Kitchen	7000	5000	4 x 3 x 1.5m	0.04m, 0.76°	0.58m, 5.65°	0.59m, 4.32°	0.58m, 4.17°
Stairs	2000	1000	2.5 x 2 x 1.5m	0.32m, 1.32°	0.56m, 7.71°	0.47m, 6.93°	0.48m, 6.54°

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 47

PoseNet robustness

Tolerance to environment, unknown intrinsics, weather, etc.

Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

ParisTech

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 49

PSL PoseNet: importance of relative weighting of position-orientation errors

PoseNet performance improves with more data

Contreras, Luis, and Walterio Mayol-Cuevas. Towards CNN Map Compression for camera relocalisation. arXiv:1703.00845, 2017.

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 51

MINES ParisTech

PSL *

PoseNet: graceful degradation with increased spacing of training images

PoseNet: importance of transfer learning

Visual ego-Localization for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 53

PoseNet vs. traditional methods

Dataset	PoseNet with Geometry [1]	Active Search (SIFT + Geometry) [2]
King's College	0.88m, 1.04°	0.42m, 0.55°
Resolution	256 x 256 px	1920 × 1080 px
Inference Time	2 ms	78 ms

PoseNet less precise, but much faster and can work with much smaller images