

Visual scene real-time analysis for Intelligent Vehicles:

Visual ego-Localization with Deep-Learning using GIS images & on-board camera

Pr. Fabien Moutarde Center for Robotics MINES ParisTech PSL Université Paris

Fabien.Moutarde@mines-paristech.fr
http://people.mines-paristech.fr/fabien.moutarde

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 1

Acknowledgements

Content of several of these slides are borrowed from:

Alex Kendall (University of Cambridge): slides on "Learning-based Visual Localization" from his CVPR'2017 tutorial https://alexgkendall.com/media/presentations/lsvpr_2017_cvpr_tutorial_alex_kendall.pdf

Several slides are also based on work and PhD thesis manuscript (https://pastel.archives-ouvertes.fr/tel-01863297) of my former PhD student Li YU.

Outline

- GIS geo-tagged images
- Visual localization from GIS images using BoVW+RANSAC
- Visual Localization with Deep-Learning
- Visual Localization from GIS images using Deep-Learning

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 3

Outdoor visual ego-localization

Visual ego-localization motivations

- GPS not always available (indoor, tunnels, underground parkings, <u>« urban canyons »</u>)
- GPS precision quite low (up to 10m error! [except for differential GPS]
- GPS directly provides position but NOT the orientation (only the local orientation of TRAJECTORY can be estimated over time)
- Odometry is quite imprecise (cf. wheel slip!), and subject to large rapid cumulative errors
- Inertial Measurement Unit (IMU) expansive if precise, and subject to cumulative errors

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 5

Geographical Information System (GIS)

	GoogleMaps	HERE	Bing Maps	OpenStreetMap	BaiduMaps	TomTom	Mappy
Geo-data	+	+	+	+	+	+	+
Depth	+	+	-	=3	+	+	-
2D Maps	+	+	:		+	+	
HD Maps	-	+	-	-7	1=	+	97
3D Models	+	+	2	20	02	12	<u>~</u> 3
Live Maps	+	+	4	.	+	+	+
Street View	+	. 0	s=.	≅ 8	+	15.	= 8
Public Access	+	+		+	7 8	-	= 0
Route Planer	+	+	+	+	+	+	+
Coverage	++	++	++	+	+	+	+
Accuracy	++	++	++	+	+	++	+

Several GIS now contain *millions* of *geo-tagged* images

Geo-tagged images

An extracted Street View of the Arc de Triomphe by setting parameters as 640×320 resolution, latitude= 48.8738, longitude= 2.2950, 0° heading, 0° pitch and 120° field of view.

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 7

Google StreetView sensors

(b)

Collected from a car-mounted panoramic camera system + a LIDAR laser scanner.

R7 panoramic camera system = rosette of 15 identical and synchronized cameras with 5-megapixel CMOS image sensors and low-flare, controlled-distortion lenses.

Google StreetView data

360° panoramas (RGB in UHD 13,312x6,656 pixels + coarse 360° depthMap ~ every 10-50 m in ~3000 city centers worldwide

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 9

Synthesis of rectified views from panoramic image

Specify:

- Orientation θ,Φ
- Focal length ~ Field of View
- Resolution

→ Compute a synthetic rectified image

Outline

- GIS geo-tagged images
- Visual localization from GIS images using BoVW+RANSAC
- Visual Localization with Deep-Learning
- Visual Localization from GIS images using Deep-Learning

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 11

Using StreetView panorama for visual ego-localization

- Distorsion of 360° images + unknown query viewpoint
- → Generate synthetic views (with same focal length as on-board camera) in several orientations

Visual place recognition with GIS images

With enough (~8-12) rectified synthetic images generated with several viewpoints, coarse <u>visual place recognition</u> by standard Bag of VisualWords (BoVW) is possible

→ Pre-compute 1 BoVW x ~10 views for each geo-tagged panorama

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 13

Co-similarity between GIS images

Pre-compute co-similarity matrix between all synthetized rectified views + filter by topologic proximity to help finding several pertinent best matches

Visual metric localization from GIS images

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 15

Visual metric localization from geo-tagged reference view

 Estimation of translation+rotation from reference view to query image by <u>multiple matches of</u>

keypoint descriptors (with

outliers filtering by RANSAC)

Use geo-tag of reference view
 + estimated translation&rotation
 to estimate current absolute
 position and heading

Experiment: set-up

Techniques:

- MIPSee Cameras 57.6° Fov / 20 fps
- 640*480 resolution
- Real Time Kinematic(RTK) GPS as ground truth (<20cm)

Work by my former PhD student Li YU

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 17

Experiment: results

- -13 panoramas in a 287m street
- -Ground truth in green
- -58/423 images localized
- -Average error < 6.5m, 58.6% < 2m
- -Standard GP <8m

Experiment: discussion

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 19

Generating virtual views BETWEEN StreetView panoramas

Too long distance between 2 panoramas!

→ Also generate *virtual views* <u>at positions</u> <u>between 2 successive panoramas</u>

Possible thanks to availability of (coarse) panoramic depth map in StreetView

Typical virtual views BETWEEN StreetView panoramas

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 21

Choice of translation offset for virtual views

Translation distance	2m	4m	6m	8m
Invalid camera position	0	3	11	27
Uniform distribution	N	Y	Y	N
Ratio of virtual views with null pixels	0	0.125	0.5	1

4-meter forward/backward virtual panoramas are constructed from the original panorama.

Results of experiment with « augmented » StreetView

		Original Street View	Augmented Street View
Continuity		137/1046	281/1046
Average	Error	3.82m	3.19m
Ratio in	[0m, 1m]	21.89%	41.28%
Ratio in	[1m, 2m]	28.47%	27.40%
Ratio in	[2m, 3m]	44.53%	19.22%
Ratio in	[3m, 4m]	5.11%	12.10%

- 1046 query images
- 498m trajectory
- 28 existing panoramas
- 53 virtual panoramas synthesized

with augmented Street View:

More query images are localized

68.7% of estimated positions with error <2m

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 23

Outline

- GIS geo-tagged images
- Visual localization from GIS images using BoVW+RANSAC
- Visual localization with Deep-Learning
- Visual Localization from GIS images using Deep-Learning

PoseNet: 6-DoF camera pose regression with Deep-Learning

Trained with a naïve end-to-end loss function to regress camera position, x, and orientation, q

$$loss(I) = \|x - \hat{x}\|_{2} + \beta \left\| q - \frac{\hat{q}}{\|\hat{q}\|} \right\|_{2}$$

[A. Kendall, M. Grimes & R. Cipolla, "PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization«, ICCV'2015, pp. 2938-29461

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 25

PSL PoseNet applies Transfer learning for a task totally different from classification!

By removing last layer(s) (those for classification) of a convNet trained on ImageNet, one obtains a transformation of any input image into a semi-abstract representation, which can be used for learning SOMETHING ELSE (« transfer learning ») by creating new convNet output and perform learning of new output layers + fine-tuning of re-used layers

PoseNet training data and test results

training data in green, test data in blue, PoseNet results in red

Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 27

PSL® PoseNet results on other tests

Figure 4: Map of dataset showing training frames (green), testing frames (blue) and their predicted camera pose (red). The testing sequences are distinct trajectories from the training sequences and each scene covers a very large spatial extent.

PoseNet results summary

	# Fra	ames	Spatial	SCoRe Forest	Dist. to Conv.		
Scene	Train	Test	Extent (m)	(Uses RGB-D)	Nearest Neighbour	PoseNet	Dense PoseNet
King's College	1220	343	140 x 40m	N/A	3.34m, 2.96°	1.92m, 2.70°	1.66m, 2.43°
Street	3015	2923	500 x 100m	N/A	1.95m, 4.51°	3.67m, 3.25°	2.96m, 3.00°
Old Hospital	895	182	50 x 40m	N/A	5.38m, 4.51°	2.31m, 2.69°	2.62m, 2.45°
Shop Façade	231	103	35 x 25m	N/A	2.10m, 5.20°	1.46m, 4.04°	1.41m, 3.59°
St Mary's Church	1487	530	80 x 60m	N/A	4.48m, 5.65°	2.65m, 4.24°	2.45m, 3.98°
Chess	4000	2000	3 x 2 x 1m	0.03m, 0.66°	0.41m, 5.60°	0.32m, 4.06°	0.32m, 3.30°
Fire	2000	2000	2.5 x 1 x 1m	0.05m, 1.50°	0.54m, 7.77°	0.47m, 7.33°	0.47m, 7.02 °
Heads	1000	1000	2 x 0.5 x 1m	0.06m, 5.50°	0.28m, 7.00°	0.29m, 6.00°	0.30m, 6.09°
Office	6000	4000	2.5 x 2 x 1.5m	0.04m, 0.78°	0.49m, 6.02°	0.48m, 3.84°	$0.48 \text{m}, 3.62^{\circ}$
Pumpkin	4000	2000	2.5 x 2 x 1m	0.04m, 0.68°	0.58m, 6.08°	0.47m, 4.21°	$0.49 \text{m}, 4.06^{\circ}$
Red Kitchen	7000	5000	4 x 3 x 1.5m	0.04m, 0.76°	0.58m, 5.65°	0.59m, 4.32°	0.58m, 4.17°
Stairs	2000	1000	2.5 x 2 x 1.5m	0.32m, 1.32°	0.56m, 7.71°	0.47m, 6.93°	0.48m, 6.54°

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 29

PoseNet robustness

Tolerance to environment, unknown intrinsics, weather, etc.

Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

PoseNet summary: robust to scene change + very fast

- √ Robust to lighting, weather, dynamic objects
- √ Fast inference, <2ms per image on Titan GPU
 </p>
- √ Scale not dependent on number of training images
- X Coarse accuracy
- X Difficult to learn both position vs orientation

Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 31

PoseNet vs traditional methods

Dataset	PoseNet with Geometry [1]	Active Search (SIFT + Geometry) [2]
King's College	0.88m, 1.04°	0.42m, 0.55°
Resolution	256 x 256 px	1920 × 1080 px
Inference Time	2 ms	78 ms

PoseNet less precise, but much faster and can work with much smaller images

PoseNet: importance of relative weighting of position-orientation errors

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 33

PoseNet performance improves with more data

Scales very well:

- Constant inference time (single forward pass of the network)
- Constant memory
 (~5 MB of neural
 network weights)

Contreras, Luis, and Walterio Mayol-Cuevas. Towards CNN Map Compression for camera relocalisation. arXiv:1703.00845, 2017.

PoseNet: graceful degradation with increased spacing of training images

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 35

PoseNet: importance of transfer learning

MINES * PSL*

Outline

- GIS geo-tagged images
- Visual localization from GIS images using BoVW+RANSAC
- Visual localization with Deep-Learning
- Visual Localization from GIS images using Deep-Learning

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 37

Deep-Learning pose regression from GIS images

- Learn an only 3-DoF pose (x,y,θ)
- Start transfer learning from <u>InceptionV3</u> model modified as follows:
 - final classifier replaced by a dropout layer
 - fully connected layer with 256 neurons added and connected to final 3-dimension pose regressor
- Use StreetView "augmented" with virtual views added 4m after each geo-tagged panorama

Work by my former PhD student Li YU

First results of Deep-Learning visual localization trained on GIS images

		Nh of	Average loc	verage localization errors		
SeqID (length)	Nb of imag es	Nb of StView panoramas (nb of virtual ones)	features + geometry	pose regression CNN		
1 (234 m)	897	29 (1160)	2.85 m	7.62 m		
2 (271 m)	898	29 (1160)	2.63 m	7.93 m		
3 (222 m)	895	29 (1160)	Fail	Fail		
4 (216 m)	901	34 (1360)	2.82 m	7.55 m		
F (265 m)	554	29 (1160)	Fail	7.87 m		

Localization errors (~ 7m and 23°) larger than with BoVW+geometry

BUT

Error comparable to GPS, and much faster to compute than using BoVW+geometry

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 39

Improvement perspectives for DL continuous pose regression

- Pre-train on much more data (from other places)?
- Use temporal continuity (« video localization »)

Video localization with PoseNet+RNN

- PoseNet + Temporal Recurrent Neural Network
 - Learns dynamics of platform temporal features
 - Bidirectional analogous to "smoothing"
- · Mixture of Gaussian output

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 41

PoseNet+RNN results for video localization

- · Outperforms smoothing baseline
- Diminishing returns using very long sequences

Clark et al., VidLoc: A Deep Spatio-Temporal Model for 6-DoF Video-Clip Relocalization. IEEE CVPR 2017.

Conclusions

- Geo-tagged images from Geographical Information Systems (GIS) such as GoogleMaps+StreetView and BaiduMaps can be successfully leveraged for citywide metric visual ego-localization of vehicles
- Machine-Learning approaches (in particular Deep-Learning pose regression) is a very interesting alternative to standard visual localization methods: currently still ~ 2 times less precise, but much less computer-intensive for online part
- The latter is therefore one of current « hot » research topics, and precision improvements are on the way

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019 43