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Outline

• GIS geo-tagged images

• Visual localization from GIS images

using BoVW+RANSAC

• Visual Localization with Deep-Learning

• Visual Localization from GIS images

using Deep-Learning
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Outdoor
visual ego-localization

Where am I?

(position+bearing)
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Visual ego-localization
motivations

• GPS not always available (indoor, tunnels,

underground parkings, « urban canyons »)

• GPS precision quite low (up to 10m error ! 
[except for differential GPS]

• GPS directly provides position but NOT the 

orientation (only the local orientation of 

TRAJECTORY can be estimated over time)

• Odometry is quite imprecise (cf. wheel slip!), 

and subject to large rapid cumulative errors

• Inertial Measurement Unit (IMU) expansive if 

precise, and subject to cumulative errors
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Geographical Information 
System (GIS)

Several GIS now contain

millions of geo-tagged images
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Geo-tagged images
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Google StreetView sensors

Collected from a car-mounted panoramic camera system 

+ a LIDAR laser scanner. 

R7 panoramic camera system = rosette of 15 identical and 

synchronized cameras with 5-megapixel CMOS image 

sensors and low-flare, controlled-distortion lenses.
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Google StreetView data

360° panoramas (RGB in UHD 13,312x6,656 pixels 

+ coarse 360° depthMap

~ every 10-50 m in ~3000 city centers worldwide
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Synthesis of rectified views
from panoramic image

Specify:

• Orientation q,F

• Focal length ~ Field of View

• Resolution

è Compute a synthetic rectified image
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Using StreetView panorama for 
visual ego-localization

• Distorsion of 360° images 

+ unknown query viewpoint

è Generate synthetic views (with same focal 

length as on-board camera) in several orientations
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Visual place recognition 
with GIS images

With enough (~8-12) rectified synthetic images generated

with several viewpoints, coarse visual place recognition

by standard Bag_of_VisualWords (BoVW) is possible

èPre-compute 1 BoVW x ~10 views

for each geo-tagged panorama
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Co-similarity between GIS 
images

Pre-compute co-similarity matrix between all synthetized

rectified views + filter by topologic proximity

to help finding several pertinent best matches
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Visual metric localization
from GIS images

Query image 
(from on-board camera)

Query image 
Keypoints

Query image 
BoVW

OFFLINE

Geo-tagged
reference view

ONLINE (onboard)

Geo-tagged
panoramas from GIS

Geo-tagged
synthetized views

Keypoints in 
synthetized views

BoVWs of 
synthetized views

BoVWW
MATCHING

Translation 
& Rotation 

by RANSAC

Absolute
position & 
heading
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Visual metric localization
from geo-tagged reference view

• Estimation of translation+rotation

from reference view to query

image by multiple matches of 

keypoint descriptors (with

outliers filtering by RANSAC)

• Use geo-tag of reference view

+ estimated translation&rotation

to estimate current absolute

position and heading
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Experiment: set-up

Work by my former PhD student Li YU
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Experiment: results
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Experiment: discussion
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Generating virtual views
BETWEEN StreetView panoramas

Too long distance between 2 panoramas !

èAlso generate virtual views at positions 

between 2 successive panoramas

Possible thanks to availability

of (coarse) panoramic depth map in StreetView
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Typical virtual views
BETWEEN StreetView panoramas

Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019   22

Choice of translation offset
for virtual views
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Results of experiment with
« augmented » StreetView

68.7% of estimated positions 

with error <2m
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Outline

• GIS geo-tagged images

• Visual localization from GIS images

using BoVW+RANSAC

• Visual localization with Deep-Learning

• Visual Localization from GIS images

using Deep-Learning



Visual ego-Localization with Deep-Learning using GIS images, Pr. F. MOUTARDE, Center for Robotics, MINES ParisTech, Oct.2019   25

PoseNet: 6-DoF camera pose 
regression with Deep-Learning

[A. Kendall, M. Grimes & R. Cipolla, "PoseNet: A Convolutional Network for Real-Time 6-DOF Camera 

Relocalization« , ICCV’2015, pp. 2938-2946]
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PoseNet applies Transfer learning for a 
task totally different from classification!

By removing last layer(s) (those for classification) of a convNet
trained on ImageNet, one obtains a transformation of any
input image into a semi-abstract representation, which can
be used for learning SOMETHING ELSE (« transfer learning »)
by creating new convNet output and perform learning of
new output layers + fine-tuning of re-used layers
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PoseNet training data 
and test results
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PoseNet results on other tests
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PoseNet results summary
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PoseNet robustness
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PoseNet summary: 
robust to scene change + very fast
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PoseNet vs traditional
methods

PoseNet less precise, but much faster

and can work with much smaller images
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PoseNet: importance of relative 
weighting of position-orientation errors
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PoseNet performance 
improves with more data
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PoseNet: graceful degradation with
increased spacing of training images
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PoseNet: 
importance of transfer learning
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Deep-Learning pose 
regression from GIS images

• Learn an only 3-DoF pose (x,y,q)

• Start transfer learning from InceptionV3 model 

modified as follows:

– final classifier replaced by a dropout layer

– fully connected layer with 256 neurons added and 

connected to final 3-dimension pose regressor

• Use StreetView “augmented” with virtual views 

added 4m after each geo-tagged panorama

Work by my former PhD student Li YU
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First results of Deep-Learning visual
localization trained on GIS images

Localization errors (~ 7m and 23°)
larger than with BoVW+geometry

BUT

Error comparable to GPS, and much
faster to compute than using

BoVW+geometry

SeqID
(length)

Nb
of 

imag
es

Nb of 
StView

panoramas 
(nb of 
virtual 
ones)

Average localization errors

image 
features 

+ 
geometry

pose 
regression 

CNN

1 (234 m) 897 29 (1160) 2.85 m 7.62 m

2 (271 m) 898 29 (1160) 2.63 m 7.93 m

3 (222 m) 895 29 (1160) Fail Fail

4 (216 m) 901 34 (1360) 2.82 m 7.55 m

F (265 m) 554 29 (1160) Fail 7.87 m
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Improvement perspectives for 
DL continuous pose regression

• Pre-train on much more data (from other places)?

• Use temporal continuity

(« video localization »)
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Video localization with
PoseNet+RNN
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PoseNet+RNN results
for video localization
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Conclusions

• Geo-tagged images from Geographical Information 

Systems (GIS) such as GoogleMaps+StreetView and 

BaiduMaps can be successfully leveraged for city-

wide metric visual ego-localization of vehicles

• Machine-Learning approaches (in particular Deep-

Learning pose regression) is a very interesting

alternative to standard visual localization methods: 

currently still ~ 2 times less precise, but much less

computer-intensive for online part

• The latter is therefore one of current « hot » research

topics, and precision improvements are on the way


