

End-to-end driving from vision with Deep-Learning

Pr. Fabien MOUTARDE Center for Robotics MINES ParisTech PSL Université Paris

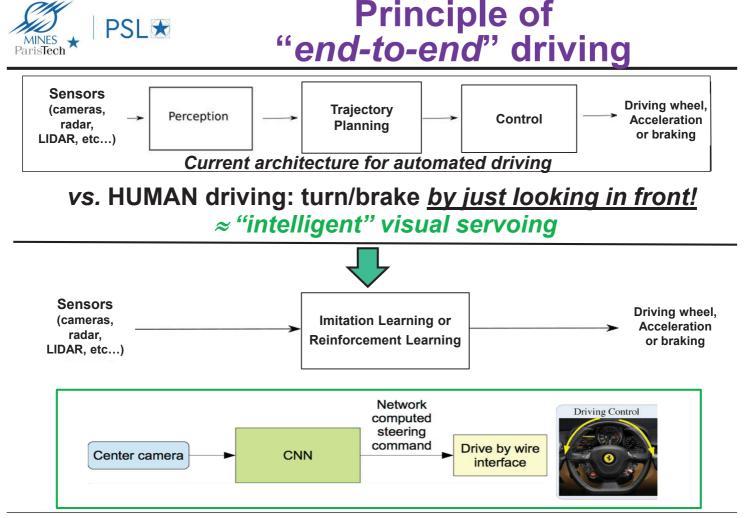
Fabien.Moutarde@mines-paristech.fr

http://people.mines-paristech.fr/fabien.moutarde

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 1

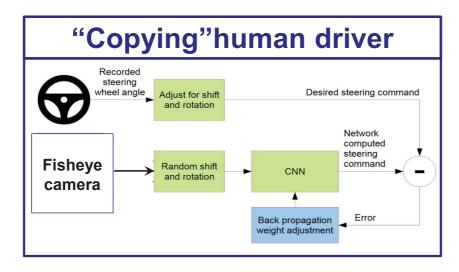
Outline

- End-to-end driving & IMITATION learning
- Reinforcement Learning (RL)
- Deep RL (DRL) for Automated Driving



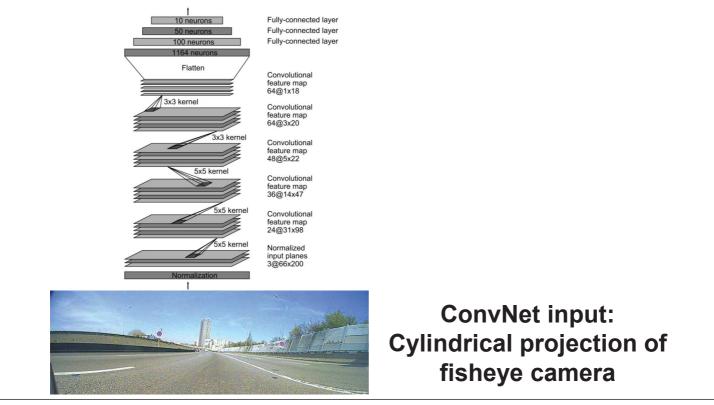
End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 3

Imitation Learning for end-to-end driving



<u>"End to End Vehicle Lateral Control Using a Single Fisheye Camera"</u>, Marin Toromanoff, Emilie Wirbel, Frédéric Wilhelm, Camilo Vejarano, Xavier Perrotton et Fabien Moutarde, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018), Madrid, Spain, 1-5 oct. 2018.

ConvNet output: steering angle



End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 5

Real data + "Simulator" with real images

Training+testing dataset = <u>10000 km</u> and <u>200 hours</u> of

human driving in openroad (highways, urban streets, country roads, etc...) under various weather conditions

TrainSet = 10 million images, TestSet = 3 million images.



"ConvNet in-the-loop" simulator with <u>real</u> images

[Work by my Valeo CIFRE PhD student Marin Toromanoff]

MINES ParisTech

End-to-end driving: closed loop evaluation

TABLE V: Autonomy (%) and mean absolute distance (MAD, in cm) according to data distribution and validation scenario, the baseline is just going straight.

Scenario	Urban		Highways		Sharp turns	
Metric	Aut.	MAD	Aut.	MAD	Aut.	MAD
	(%)	(cm)	(%)	(cm)	(%)	(cm)
Original	99.3	16	98.7	19	73.7	30
Sel. #1	98.9	15	97.7	25	83.7	27
Sel. #2	99.5	16	97.2	24	87.5	28
Oversamp.	98	18	91.8	29	82.5	29
Baseline	8	36	14	41	0	35

TABLE VI: Comparison of performance between individual networks and bagging

Scenario	Urban		Highways		Sharp turn	
Metric	Aut.	MAD	Aut.	MAD	Aut.	MAD
	(%)	(cm)	(%)	(cm)	(%)	(cm)
Weights #1	99.5	16	97.2	24	87.5	28
Weights #2	98.9	15	97.7	25	83.7	27
Weights #3	99.3	16	98.7	19	73.7	30
Weights #4	98.6	18	92	26	85	29
Weights #5	98.4	15	96.4	21	83.7	28
Bagging	99.5	13	98.7	19	87.5	27

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 7

PSL End-to-end driving (learnt purely on real-world data) tested in GTA simulator

[Work by my Valeo CIFRE PhD student Marin Toromanoff]

[Work by Valeo using ConvNet trained by my CIFRE PhD student Marin Toromanoff]

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 9

Demonstration at CES'2018

The car stops on the barrier

[Work by Valeo using ConvNet trained by my CIFRE PhD student Marin Toromanoff]

<u>"End to End Vehicle Lateral Control Using a Single Fisheye Camera"</u>, Marin Toromanoff, Emilie Wirbel, Frédéric Wilhelm, Camilo Vejarano, Xavier Perrotton et Fabien Moutarde, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018), Madrid, Spain, 1-5 oct. 2018.

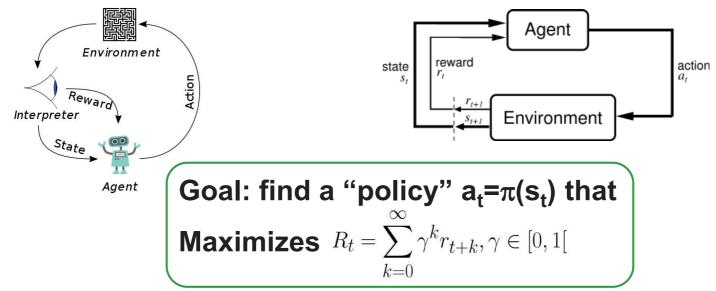
Promising results BUT

Difficult to cover large-enough variability of situations/environments with real driving data

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 11

Outline

- End-to-end driving & IMITATION learning
- <u>Reinforcement Learning (RL)</u>
- Deep RL (DRL) for Automated Driving



<u>Deep</u> Reinforcement Learning (<u>DRL</u>) if Deep NeuralNet used as model (for policy and/or its "value"): DQN, Actor-Critic A3C

End-to-end driving: policy π searched as ConvNet(front-image)

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 13

3 families of RL algorithms

- Policy-based $\pi_{\theta} \approx \pi^*$ optimize a parameterized policy
- Value-based $Q(s, a, \theta) \simeq Q^{\pi^*}(s, a)$ find the optimal (parameterized) Q-value
- > Model-free

Model-based

 $m(s_t, a_t, \theta') \approx s_{t+1}, r_{t+1}$

Value and Q-function

Value of a policy (from a given state) V_π(s) = E_π[R_t|s_t = s] = E_π[∑_{k=0}^T γ^tr_{t+k}|s_t = s] Q-function of a policy

 $Q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_t|s_t = s, a_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^T \gamma^t r_{t+k}|s_t = s, a_t = a]$

THERE ALWAYS EXISTS A DETERMINISTIC OPTIMAL POLICY π^*

 $\forall \pi, \forall s \in S, V_{\pi^*}(s) \geqslant V_{\pi}(s)$

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 15

PSL PSL Deep Reinforcement Learning with Deep Q Network (DQN)

- **Q-learning:** $Q^{new}(s_t, a_t) \leftarrow (1 \alpha) \cdot \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max}_{a} Q(s_{t+1}, a)\right)}_{\text{estimate of optimal future value}}$
- Optimal policy deduced from optimal Q-value

$$\pi^*(s) = \arg\max_a Q_{\pi^*}(s, a)$$

 DQN [1]: if too many possible states, approximate Q as a neural network, and learn Q* using SGD with loss from Bellman equation

$$L(s_t, a_t, r_{t+1}, s_{t+1}, \theta) = (r_{t+1} + \gamma \max_a Q(s_{t+1}, a, \theta) - Q(s_t, a_t, \theta))^2$$

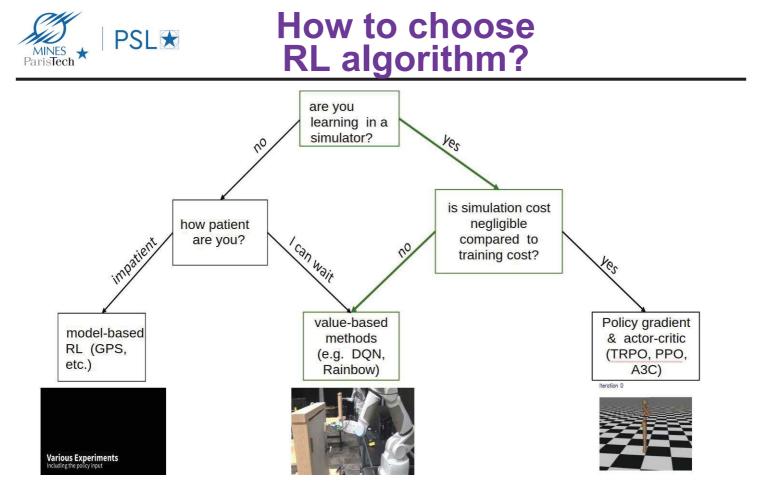
target

[1] V. Mnih et al : Human-level control through deep reinforcement learning (2015)

Summary of main RL algorithm types

	Family	Algorithm	On/Off policy	Discrete/continuous output?
Policy	REINFORCE	On policy	Both	
	based	Actor-Critic (A3C)	On policy	Both
	Value based	SARSA	On policy	Discrete
		Q-Learning (DQN)	Off-policy	Discrete
	Model	MCTS	Off-policy	Discrete
based	iLQG	Off-policy	Continuous	

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 17



[1] S. Levine: CS294 Deep Reinforcement Learning (2017)

- End-to-end driving & IMITATION learning
- Reinforcement Learning (RL)
- Deep RL (DRL) for Automated Driving

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 19

MINES ★ PSL★ Deep RL for automated driving

Until recently, very few published research, and mostly in racing games:

Asynchronous methods for deep reinforcement learning, V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, ICML'2016.

<u>End-to-End Race Driving with Deep Reinforcement Learning</u>, Maximilian Jaritz, Raoul De Charette, Marin Toromanoff, Etienne Perot, Fawzi Nashashibi, *ICRA 2018 - IEEE International Conference on Robotics and Automation*, Brisbane, Australia, May 2018.

• Up to now, only real driving with RL: "Learning to Drive in a Day" (2018, [1])

- Embed DRL in a real car, and learn « from scratch »
- But VERY SIMPLE CASE: lane keeping along 250m!

• Simulation used before to design architecture and find hyperparameters

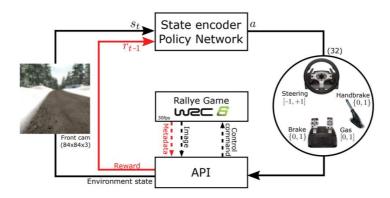
[1] A. Kendall et al.: Learning to Drive in a Day (2018)

Preliminary DRL experiment for end-to-end driving

[Work by my Valeo CIFRE PhD student Marin Toromanoff]

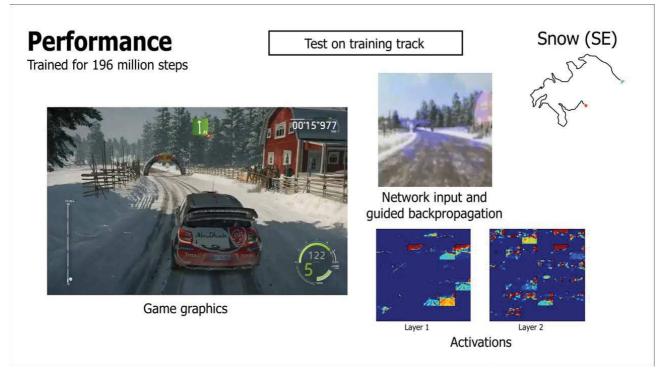
End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 21

PSL End-to-end driving learning by RL in racing-car simulator



Etienne Perot, Maximilian Jaritz, Marin Toromanoff, Raoul De Charette. End-to-End Driving in a Realistic Racing Game with Deep Reinforcement Learning, International conference on Computer Vision and Pattern Recognition - Workshop, Honolulu, United States, Jul. 2017.

End-to-end driving learnt by RL in racing-car simulator



<u>End-to-End Race Driving with Deep Reinforcement Learning</u>, Maximilian Jaritz, Raoul De Charette, Marin Toromanoff, Etienne Perot, Fawzi Nashashibi, *ICRA 2018 - IEEE International Conference on Robotics and Automation*, Brisbane, Australia, May 2018.

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 23

RL for Automated Driving: why learn in a simulator?

- RL require huge amount of trial & error, and initial policy = very bad driving!
 ⇒ Learn in <u>simulation</u> (for safety + speed)
- Still few driving simulators adapted for DL and RL, and best ones not totally mature

Simulateur	GTA	DeepDrive.io	AirSim	CARLA[1]	
Flexibilité		++	++	++	
Variété	++		<u></u>	+	
Complexité/Réalisme	++			—	
Objets mobiles	++			+	
Vitesse éxecution		+	+	-	
Multi-agent		—		++	
	→ Choice of CARLA				

[1] A. Dosovitskiy: CARLA: An Open Urban Driving Simulator (2017)

CARLA simulator

Open source, flexible

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 25

PSL Autonomous Driving challenge

- Itinerary to be followed in a city (given by 4 possible orders at intersections: Left, Straight, Right, Follow_Lane) BUT must stay on the road, in the lane, respecting Traffic Lights, and no collision with pedestrians and other cars!
- •Evaluation metrics = Task completion & Distance between infractions, in an UNSEEN CITY
- •Results (and 10.000\$ for winners!) on July 1st

- Rainbow [1] = combination of many improvements of DQN [4]
 currently SoA on ATARI benchmark
- IQN [2] = learning with <u>probability distributions</u> rather than just expectation of average

Mean	Median	Human Gap	Seeds
228%	79%	0.334	1
434%	124%	0.178	1
701%	178%	0.152	1
1189%	230%	0.144	2
864%	193%	0.165	3
1019%	218%	0.141	5
	228% 434% 701% 1189% 864%	228% 79% 434% 124% 701% 178% 1189% 230% 864% 193%	228% 79% 0.334 434% 124% 0.178 701% 178% 0.152 1189% 230% 0.144 864% 193% 0.165

Ape-X [3] <u>multi-agent</u> version of DQN allowing massively parallel distributed learning ⇒ Largely better performance, but typically require 22 billions of frames (vs. 200 millions)

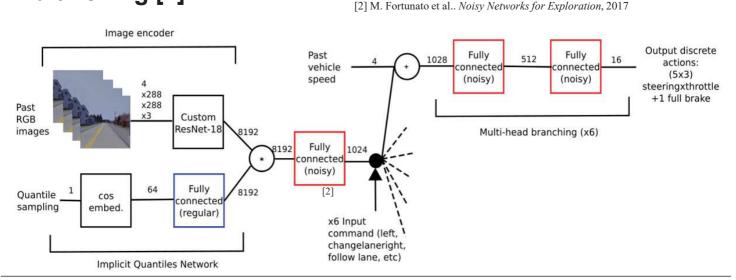
[1] M. Hessel et al : Rainbow: Combining Improvements in Deep Reinforcement Learning Matteo (2017)

- [2] D. Silver et al : Implicit Quantile Networks for Distributional Reinforcement Learning (2018)
- [3] B. Horgan et al : Distributed Prioritized Experience Replay (2018)
- [4] V. Mnih et al : Human-level control through deep reinforcement learning (2015)

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 27

Network architecture

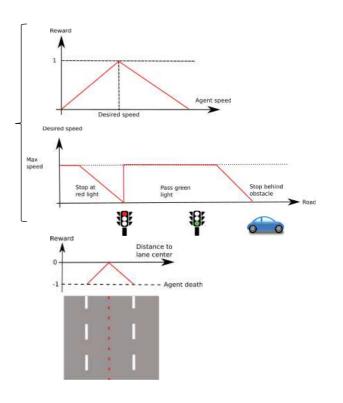
- U.S. Traffic lights → Need to use COLOR and high-enough resolution ⇒ big network, hard and slow to train
- Use a resnet-18 (10 times more weight than previously used in *DQN-like* network)
- Handle turn-orders (at intersections) with multi-head branching [1]
 [1] Codevilla et al., End-to-end driving via Conditional Imitation Learning, 2017
 [2] M. Extracted al. With Weight for Enderting 2017



PSL Reward shaping

Rewards scaled in [-1, 1]:

- Speed: positive reward to follow speed, depends on obstacles & traffic light
- Lateral position: negative reward depending on distance to lane center
- Episode terminates on collision, running red traffic light, too far from lane center or stuck (if no reason to stop)



End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 29

PSL Examples of autonomous driving obtained with our DRL



Town02: Single Lane, EU Weather: Heavy rain Traffic Light: Red

Network input

Current Order: Left Current Speed: 1.8 km/h PSL Conclusions & perspectives

- Very encouraging first results of RL: able to learn a kind of "Intelligent visual servoing" for Autonomous Driving
- Our approach ranked 1st (vision-only track) on CARLA "Autonomous Driving challenge" !!
 → presentation at CVPR'2019 workshop
- Future work:
 - Transferrability to real-world videos
 - Combination of Imitation-Learning and RL?

End-to-end driving from vision with DL, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2019 31

QUESTIONS?

