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ABSTRACT

In this paper, we present a new traffic-mining apgh for automatic unveiling of typical global
evolution of large-scale road networks. Our methseés as input a history of continuous traffic State
(typically measured by travel times) of *all* linkd the road graph. This historical data concatmhat
in a link/time matrix is then approximated with lacality-preserving Non-negative Matrix
Factorization (NMF) method. The network-level tiaf§tate similarity takes into account the graph
topology by systematically combining link-wise caanigons with same measure on adjacent links.
Based on the obtained matrix factorization, we gobpriginal high-dimensional network-level traffic
information into a feature space (that of NMF comgrats) of much lower dimensionality than
original data. Importantly, because we usenatified NMF ensuring locality-preserving property
(LP-NMF), the proximity of data-points in low-dinrgjected space correspond to proximity also in
original high-dim space. We can therefore applndaad clustering methods easily in low-dim space,
and directly deduce from its output pertinent catetion of global network traffic states and
dynamics. Experimentations on simulated data witirge realistic network of more than 13000 links
have been done, and show that our method allowagity obtain meaningful partition of the attained
global traffic states, and to deduce a categodnatf the global daily evolution.

INTRODUCTION

The majority of published work on traffic data arsa¢é and prediction focus on mining
temporal patterns of traffic data measured on iddial links [1][2][3]. These works only
analyze temporal properties of local link leveffficastates. In fact, in a typical urban traffic
scenario, traffic states of one link are correlatéth neighboring areas. Network-level traffic
states can be regarded as complementary knowleddecanstraints in predicting or
analyzing link level traffic patterns. Thereforey recent years, with improvement of
intelligent transportation systems, it becomes s&mgy to unveil global traffic patterns at
network level. Global traffic information provide®verall descriptions of spatial
configurations of traffic states over the wholed@etwork, which can improve performances
of traffic guidance or control systems [3].

In large-scale traffic networks, like urban traffigstems, network level traffic information is
often represented in a high-dimensional featureeespahich makes it difficult to extract
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characteristics of global traffic states. In ourrkyowe firstly adopt a geometrical weighted
distance to evaluate similarity between networlelavaffic patterns, which is described in
the second section. Then, we make use of a matatorization method with topological
regulation item to obtain a low-dimensional repréaBon model of global traffic states, as
described in the third section. In a further step perform clustering of global traffic states
based on the learned low dimensional representatiororder to extract typical spatial
patterns of network-level traffic states. In theafi part of the paper, we present clustering
structures of network-level traffic patterns widspect to a large-scale link network and make
conclusions of the whole paper.

LOCALITY-PRESERVING NON-NEGATIVE MATRIX
FACTORIZATION APPLIED TO TRAFFIC DATA

A network level traffic state is defined by a seoee of link level traffic states with respect to
each individual link in the road network, whichnermally represented in a n-dimensional
vector, with n being the number of links in thewatk. Dimensionality of network-level
traffic status representation is directly proparibto the number of links in the network.
Given a large-scale network, which is common inliappons of urban traffic control, the
resultant high-dimensional traffic state represwmnais difficult to store or use for traffic
prediction / classification due to the curse of éirsionality.

To attack this issue, we propose to use localigs@rving non-negative matrix factorization
(LP-NMF) [4][5] to obtain low-dimensional represation of global traffic states. Assuming
that k samples of n-dimensional global traffic esatre stored as n*k matrix X, LP-NMF
factorizes X into the non-negative n*s matrix M asttk matrix V', which minimizes the
following objective function:

O=|X =MV Tl +ATr(vTLV) (1)

The first term is the Frobenius reconstruction rewih respect to M and V. Each sample is
approximated by a linear combination of the colunehdVl, weighted by the rows of V.
Therefore, M can be regarded as containing a lddvasis of the global traffic states, while V
concatenates-dimensional representations of original sampleawéngiven basis. The number
s of NMF components is usually set to be much |éss tthe original dimensionality.
Therefore, we actually obtain a much lower dimenaiorepresentation of network-level
traffic state after factorization, which removesluedancy in the original high-dimensional
space and makes it flexible to implement statiktacelysis on the manifold V. In contrast
with SVD decomposition, derived manifold space as mecessarily orthogonal in NMF. It is
also required that each data sample takes posiioadinates in the low-dimensional feature
space. The above two properties makes NMF moraldaito describe the latent distribution
structures, especially when overlap exists amofffgrent clusters of data samples. In the
second term of the object function, L is called grd.aplacian [6], defined as D-W. In the
matrix W, w;is the pair-wise geometrical weighted similarityasere matrix betweenth
and j-th k global traffic state sample. Due to symmetfytlee distance measure, W is a
symmetric matrix.



In a typical traffic network, the traffic state ohe specific link is closely correlated with its
up-stream or down-stream nearest neighbors in wessts. Therefore, we use a similarity
measure that takes into account the road graphadgypoby merging together differences
between traffic states of each link with link-wigdference values of its up-stream and
down-stream neighbors. D is a diagonal matrix whergeies are column sums of W, defined
as Eq.2:

D, = ZW” (2)

By adding the Graph Laplacian based constraint®e tbtained low-dimensional

representation V are calibrated to have similapkogical structures as original samples X,
which means that two close samples and x; are also close in the low-dimensional
manifold V. With this property, we can analyze glbbtraffic states easily in the

low-dimensional manifold V instead of high-dim arigl space, without loss of intrinsic data
distribution of original samples X.

Each elementv; of matrix V represents to which degreth original sample is associated
with thej-th expanding basis in matrix M. iith sample could be represented solely using the
j-th basis, thenv; would take the largest value in théh row of V[7]. Therefore, we simply
use V to determine the cluster labels of the netvevel traffic states. For eack,, we

examine the-th row of V and assign xi to theh cluster, j =arcmaxv;.
j

EXPERIMENTAL RESULTS
SIMULATED TRAFFIC DATA

The traffic-mining method we propose makes sensengiglly for analyzing data of a large
network with many streets/roads, such as city-wideity+suburbs. Real-world traffic data of
this type are not easily accessible, therefore hamse to first apply our approach on realistic
simulated data. To this end, we use Metropolis Etran software [8], which was designed to
model transportation systems. It contains a corapktvironment to handle dynamic
simulations of daily traffic in one specific traffinetwork. It allows the user to study the
impacts of transportation management policies ilarge-scale urban traffic network in a
time-dependent manner. We use Metropolis to binédlienchmark traffic database of Paris
and suburb regions, which is composed by 4660 mogisections and 13627 links in the
network, as we can see in the Figure 1. Each stedifmaffic scene is generated to cover 8
hours of observations, including congestion in nmagnush hours. Different traffic situations
are obtained by adding random events and fluctnatidghe O-D matrix (Origin-Destination)
and capacity of network flow. There are totally 188nulated traffic scenarios in our
benchmark data set. Each one contains 48 time, stepgsponding to 10-minute bins over
which the network traffic flow is aggregated, caagr4:00 a.m. till noon. To represent traffic
states in each link, we propose to use traffic xnf#[10] in each link at a specific time,
which is defined as follows in EQ.3.

At
At

x, =—0[0]1] (3)



The denominator is the observed travel time in linlat timet, the numerator is the free-flow

travel time on this link. The smaller the traffindex is, the corresponding link is more
congested. To perform clustering analysis, we demede all the observations of global
traffic states into a 13627*5184 matrix. Each cauoorresponds to a network-level traffic
status obtained at each time step, which is a L8@#@énsional vector. In the experiment, the
number of clusters is set to be 3 and 5 respeytier the convenience of visualization, we
project all the samples into 3-dimensional PCA spé&w illustrate the structures of the
obtained clusters.
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Figure 1. Traffic network of Paris and suburb regions uselMetropolis simulation software

NETWORK-LEVEL TRAFFIC-STATE CLUSTERING

In the 3D PCA space, as shown on Figure 2, the lesmgorresponding to the free-flowing
network level states are concentrated within a ksneglion in the PCA space. By contrast,
samples corresponding to network-level congestrendastributed sparsely and far from the
region of the free-flowing state. Notably, with reasing degrees of traffic jam in the network,
variations of network-level traffic patterns beconager and larger. In fact, spatial
configurations of global traffic states keep theneaif the whole network is free-flowing
everywhere. On the contrary, congestion occurrediffgrent parts of the network change the
spatial configurations in different ways, whichroduces variations in global traffic patterns.
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Figure 2. Plot of network-level traffic state representatior8D PCA space

We apply our locality-preserving NMF method to thea, setting the number s of learnt basis
to be the desired number of clusters. Figure 3tilaies, projected in 3D-PCA space, the
partition of states obtained with three and fivestérs. In the 3-clusters result, the one labeled
by blue legends represents traffic states in whiahmost all links are fluid in the network, so
we shall refer to this cluster as “Free-Flow clustBoth red and green clusters include states
with some degree of congestion in the network, eetypely “Light congestion” and “Heavy
congestion”. When increasing the number of cluster$ instead of 3, we can find more
detailed distribution structures of network-levedffic states, as shown on lower part of
Figure 3. The “Light congestion” cluster (labeledhared on top of Figure.3), is further split
into two sub-parts, labeled by pink and purple eesipely. These two sub-clusters form
elongated shapes oriented to different direction8D-PCA space, which implies different
kinds of congestion distribution in the network.
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Figure 3. Visualization in 3D-PCA space of network-level fti@ state clusters, obtained by
associating one cluster with each component olddigeapplyindocality-preservingNMF:
on upper plot 3 clusters with 3 components, antbaer plot 5 clusters with 5 components.



Exemplars of these two clusters make the differencee clear, as shown in the Figure 4,
which illustrates exemplars of clusters followirftgetsame settings of color legends as in
Figure 3. The exemplars show spatial configuratiohshe most congested network-level
traffic states in each cluster, used here as reptaive exemplars of global traffic patterns
contained in each cluster. In the exemplars, réor ¢® used to label congested links (i.e. with
traffic indices less than a specified thresholdjjlevgreen color used for fluid links. In the
exemplar of the sub-cluster labeled by pink legefidssub-cluster of “light congestion”),
illustrated in Figure 4(a), busy links tend to berenclose to the central region than the
exemplar of the sub-cluster labeled with purplestets (2 sub-cluster of “light congestion”),
as shown in Figure 4(b). Despite of similar degrefesetwork-level congestion in both two
exemplars, they indicate different spatial confajioms of traffic states in the network, which
is consistent with the difference of orientatiomshe two elongated sub-clusters. Similar split
of the cluster can also be found in the clusteresponding to heavy traffic congestion on top
of Figure 3. As we can see on bottom of same figinis cluster is split to two sub-clusters
labeled green cross and black star. Due to largatians of spatial configurations of traffic
congestions, both of two sub-clusters have spdrgetsres in the 3D-PCA space. However,
they differ in degrees and spatial layout of netewel traffic congestion.
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Figure 4. Congestion patterns of the identified clustersatad (b) on left are respective
“most-congested exemplars” of the 2 pink/purple-slisters of “light congestion”; (c) and (d) on
right are respective “most-congested exemplarsblack/green sub-clusters of “heavy congestion”.

In Figure 4(c) and (d), we compare the exemplatb®two sub-clusters labeled by black and
green legends in Figure 3 respectively. Genertllly,exemplar in Figure 4(d) contains more
busy links. Furthermore, although the central regi the network is highly congested in



both exemplars, the area to which network-levefitracongestion extend is wider in the
exemplar shown in the Figure 4(d), especially ibwsb regions. This implies a different
setting of traffic scenarios in the simulation.

FROM STATE CLUSTERING TO CATEGORIZING DAILY EVOLUTION

In a typical setting of traffic scenario simulatjdhe whole traffic network is free-flowing at
the beginning. Subsequently, traffic congestion rge® and becomes heavier and heavier
until reaching the peak of traffic jam in rush haufinally, the network-level states return to
free-flowing gradually. Therefore, network-levedffic states evolve in circular trajectories in
the PCA space, as shown in Figure 5. Along thedteajies, transitions from the free-flow
state to clusters corresponding to different typesetwork-level congestion patterns imply
totally different temporal dynamic patterns of netllevel traffic states. Comparing Figures
5 and 3, it is clear that the partition of globadffic states obtained with our method also
corresponds to a categorization of the daily evatudf traffic, with green, pink and purple
sub-clusters each corresponding to a subset gfabsible daily dynamics.
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Figure 5. The evolution trajectory of network-level trafStates, projected in 3D-PCA space

In order to verify this, we select two kinds of Igatrajectories: both start from the
free-flowing state but reach peaks of traffic castgmns in the clusters labeled by pink (one of
the 2 “light congestion” sub-clusters) and blackeleds respectively. Each trajectory is
composed by observations of network-level traftatess at 48 time steps in our benchmark
database. For each time step, we take the medic irafex value of all 13627 links in the
network as a crude measure of global traffic stdtéhe current time. The lower it is, the
heavier congestion occurs in the network. Withiched&ype of trajectories, we calculate
average of the mean traffic index at each time,sidpch results in a 48-D sequence of
average values as a general temporal dynamic patérglobal traffic states in the
corresponding type of trajectories. Figure 6 corajghe two dynamic patterns. As we can see,
trajectories with its peak of congestion locatedhia cluster labeled by black legends contain
traffic jams that have longer durations and heagtgrgestion at their peak points. These two
different temporal evolution processes of netwakel traffic states represent different
settings of requirements and supplies of traffeorteces in the network. Crude as it is, this
analysis provides us a hint that we could find ¢gpitemporal patterns of network-level
traffic patterns based on the clustering results.
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Figure 6. Examples of daily temporal evolutions, respectivielya day with peak congestion inside
the “pink” sub-cluster and for another day with p&#o “black sub-cluster”

CONCLUSION

In this paper, we have presented a new trafficingirapproach for automatic unveiling of
typical global evolution of large-scale road netkgor Our method is based on
locality-preserving non-negative matrix factoripatiof the traffic historical data. We use the
obtained matrix factorization to project originalgi-dimensional network-level traffic
information into a feature space of much lower disienality, into which we can easily
clusterize the global network states and dynanties. first experimentations, on simulated
data with a large realistic network of more tha®d@® links, indeed show that our method
allows to obtain meaningful partition of the atednglobal traffic states, and to deduce a
categorization of the global daily evolution.

Perspectives include application to real traffictagaand using the low dimensional
representation and clustering results for modeling temporal dynamic patterns of the
network-level traffic states.
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