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ABSTRACT 
In this paper, we present a new traffic-mining approach for automatic unveiling of typical global 

evolution of large-scale road networks. Our method uses as input a history of continuous traffic states 

(typically measured by travel times) of *all* links of the road graph. This historical data concatenated 

in a link/time matrix is then approximated with a locality-preserving Non-negative Matrix 

Factorization (NMF) method. The network-level traffic state similarity takes into account the graph 

topology by systematically combining link-wise comparisons with same measure on adjacent links. 

Based on the obtained matrix factorization, we project original high-dimensional network-level traffic 

information into a feature space (that of NMF components) of much lower dimensionality than 

original data. Importantly, because we use a modified NMF ensuring locality-preserving property 

(LP-NMF), the proximity of data-points in low-dim projected space correspond to proximity also in 

original high-dim space. We can therefore apply standard clustering methods easily in low-dim space, 

and directly deduce from its output pertinent categorization of global network traffic states and 

dynamics. Experimentations on simulated data with a large realistic network of more than 13000 links 

have been done, and show that our method allows to easily obtain meaningful partition of the attained 

global traffic states, and to deduce a categorization of the global daily evolution. 

INTRODUCTION 
The majority of published work on traffic data analysis and prediction focus on mining 
temporal patterns of traffic data measured on individual links [1][2][3]. These works only 
analyze temporal properties of local link level traffic states. In fact, in a typical urban traffic 
scenario, traffic states of one link are correlated with neighboring areas. Network-level traffic 
states can be regarded as complementary knowledge and constraints in predicting or 
analyzing link level traffic patterns. Therefore, in recent years, with improvement of 
intelligent transportation systems, it becomes necessary to unveil global traffic patterns at 
network level. Global traffic information provides overall descriptions of spatial 
configurations of traffic states over the whole road network, which can improve performances 
of traffic guidance or control systems [3]. 

In large-scale traffic networks, like urban traffic systems, network level traffic information is 
often represented in a high-dimensional feature space, which makes it difficult to extract 
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characteristics of global traffic states. In our work, we firstly adopt a geometrical weighted 
distance to evaluate similarity between network-level traffic patterns, which is described in 
the second section. Then, we make use of a matrix factorization method with topological 
regulation item to obtain a low-dimensional representation model of global traffic states, as 
described in the third section. In a further step, we perform clustering of global traffic states 
based on the learned low dimensional representation, in order to extract typical spatial 
patterns of network-level traffic states. In the final part of the paper, we present clustering 
structures of network-level traffic patterns with respect to a large-scale link network and make 
conclusions of the whole paper. 

LOCALITY-PRESERVING NON-NEGATIVE MATRIX 
FACTORIZATION APPLIED TO TRAFFIC DATA  
A network level traffic state is defined by a sequence of link level traffic states with respect to 
each individual link in the road network, which is normally represented in a n-dimensional 
vector, with n being the number of links in the network. Dimensionality of network-level 
traffic status representation is directly proportional to the number of links in the network. 
Given a large-scale network, which is common in applications of urban traffic control, the 
resultant high-dimensional traffic state representation is difficult to store or use for traffic 
prediction / classification due to the curse of dimensionality.  

To attack this issue, we propose to use locality preserving non-negative matrix factorization 
(LP-NMF) [4][5] to obtain low-dimensional representation of global traffic states. Assuming 
that k samples of n-dimensional global traffic states are stored as n*k matrix X, LP-NMF 
factorizes X into the non-negative n*s matrix M and s*k matrix VT, which minimizes the 
following objective function: 
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The first term is the Frobenius reconstruction error with respect to M and V. Each sample is 
approximated by a linear combination of the columns of M, weighted by the rows of V. 
Therefore, M can be regarded as containing a learned basis of the global traffic states, while V 
concatenates s-dimensional representations of original samples in the given basis. The number 
s of NMF components is usually set to be much less than the original dimensionality n. 
Therefore, we actually obtain a much lower dimensional representation of network-level 
traffic state after factorization, which removes redundancy in the original high-dimensional 
space and makes it flexible to implement statistical analysis on the manifold V. In contrast 
with SVD decomposition, derived manifold space is not necessarily orthogonal in NMF. It is 
also required that each data sample takes positive coordinates in the low-dimensional feature 
space. The above two properties makes NMF more suitable to describe the latent distribution 
structures, especially when overlap exists among different clusters of data samples. In the 
second term of the object function, L is called Graph Laplacian [6], defined as D-W. In the 
matrix W, w ij is the pair-wise geometrical weighted similarity measure matrix between i-th 
and j-th k global traffic state sample. Due to symmetry of the distance measure, W is a 
symmetric matrix. 
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In a typical traffic network, the traffic state of one specific link is closely correlated with its 
up-stream or down-stream nearest neighbors in most cases. Therefore, we use a similarity 
measure that takes into account the road graph topology, by merging together differences 
between traffic states of each link with link-wise difference values of its up-stream and 
down-stream neighbors. D is a diagonal matrix whose entries are column sums of W, defined 
as Eq.2:  
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By adding the Graph Laplacian based constraints, the obtained low-dimensional 
representation V are calibrated to have similar topological structures as original samples X, 
which means that two close samples x i and x j  are also close in the low-dimensional 
manifold V. With this property, we can analyze global traffic states easily in the 
low-dimensional manifold V instead of high-dim original space, without loss of intrinsic data 
distribution of original samples X.  

Each element vij  of matrix V represents to which degree i-th original sample is associated 
with the j-th expanding basis in matrix M. If i-th sample could be represented solely using the 
j-th basis, then vij  would take the largest value in the i-th row of V [7]. Therefore, we simply 
use V to determine the cluster labels of the network-level traffic states. For each x i, we 
examine the i-th row of V and assign xi to the j-th cluster, j = argmax

j
v ij .  

EXPERIMENTAL RESULTS   

SIMULATED TRAFFIC DATA  

The traffic-mining method we propose makes sense essentially for analyzing data of a large 
network with many streets/roads, such as city-wide or city+suburbs. Real-world traffic data of 
this type are not easily accessible, therefore we choose to first apply our approach on realistic 
simulated data. To this end, we use Metropolis simulation software [8], which was designed to 
model transportation systems. It contains a complete environment to handle dynamic 
simulations of daily traffic in one specific traffic network. It allows the user to study the 
impacts of transportation management policies in a large-scale urban traffic network in a 
time-dependent manner. We use Metropolis to build the benchmark traffic database of Paris 
and suburb regions, which is composed by 4660 road intersections and 13627 links in the 
network, as we can see in the Figure 1. Each simulated traffic scene is generated to cover 8 
hours of observations, including congestion in morning rush hours. Different traffic situations 
are obtained by adding random events and fluctuation in the O-D matrix (Origin-Destination) 
and capacity of network flow. There are totally 108 simulated traffic scenarios in our 
benchmark data set. Each one contains 48 time steps, corresponding to 10-minute bins over 
which the network traffic flow is aggregated, covering 4:00 a.m. till noon. To represent traffic 
states in each link, we propose to use traffic index [9][10] in each link at a specific time, 
which is defined as follows in Eq.3. 
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The denominator is the observed travel time in link l at timet , the numerator is the free-flow 
travel time on this link. The smaller the traffic index is, the corresponding link is more 
congested. To perform clustering analysis, we concatenate all the observations of global 
traffic states into a 13627*5184 matrix. Each column corresponds to a network-level traffic 
status obtained at each time step, which is a 13627-dimensional vector. In the experiment, the 
number of clusters is set to be 3 and 5 respectively. For the convenience of visualization, we 
project all the samples into 3-dimensional PCA space to illustrate the structures of the 
obtained clusters. 

 
Figure 1. Traffic network of Paris and suburb regions used in Metropolis simulation software 

 
NETWORK-LEVEL TRAFFIC-STATE CLUSTERING  
In the 3D PCA space, as shown on Figure 2, the samples corresponding to the free-flowing 
network level states are concentrated within a small region in the PCA space. By contrast, 
samples corresponding to network-level congestion are distributed sparsely and far from the 
region of the free-flowing state. Notably, with increasing degrees of traffic jam in the network, 
variations of network-level traffic patterns become larger and larger. In fact, spatial 
configurations of global traffic states keep the same if the whole network is free-flowing 
everywhere. On the contrary, congestion occurred at different parts of the network change the 
spatial configurations in different ways, which introduces variations in global traffic patterns.  
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Figure 2. Plot of network-level traffic state representation in 3D PCA space 

 
We apply our locality-preserving NMF method to the data, setting the number s of learnt basis 
to be the desired number of clusters. Figure 3 illustrates, projected in 3D-PCA space, the 
partition of states obtained with three and five clusters. In the 3-clusters result, the one labeled 
by blue legends represents traffic states in which almost all links are fluid in the network, so 
we shall refer to this cluster as “Free-Flow cluster”. Both red and green clusters include states 
with some degree of congestion in the network, respectively “Light congestion” and “Heavy 
congestion”. When increasing the number of clusters to 5 instead of 3, we can find more 
detailed distribution structures of network-level traffic states, as shown on lower part of 
Figure 3. The “Light congestion” cluster (labeled with red on top of Figure.3), is further split 
into two sub-parts, labeled by pink and purple respectively. These two sub-clusters form 
elongated shapes oriented to different directions in 3D-PCA space, which implies different 
kinds of congestion distribution in the network.  

 
Figure 3. Visualization in 3D-PCA space of network-level traffic state clusters, obtained by 
associating one cluster with each component obtained by applying locality-preserving NMF: 
on upper plot 3 clusters with 3 components, and on lower plot 5 clusters with 5 components. 
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Exemplars of these two clusters make the difference more clear, as shown in the Figure 4, 
which illustrates exemplars of clusters following the same settings of color legends as in 
Figure 3. The exemplars show spatial configurations of the most congested network-level 
traffic states in each cluster, used here as representative exemplars of global traffic patterns 
contained in each cluster. In the exemplars, red color is used to label congested links (i.e. with 
traffic indices less than a specified threshold), while green color used for fluid links. In the 
exemplar of the sub-cluster labeled by pink legends (1st sub-cluster of “light congestion”), 
illustrated in Figure 4(a), busy links tend to be more close to the central region than the 
exemplar of the sub-cluster labeled with purple legends (2nd sub-cluster of “light congestion”), 
as shown in Figure 4(b). Despite of similar degrees of network-level congestion in both two 
exemplars, they indicate different spatial configurations of traffic states in the network, which 
is consistent with the difference of orientations of the two elongated sub-clusters. Similar split 
of the cluster can also be found in the cluster corresponding to heavy traffic congestion on top 
of Figure 3. As we can see on bottom of same figure, this cluster is split to two sub-clusters 
labeled green cross and black star. Due to large variations of spatial configurations of traffic 
congestions, both of two sub-clusters have sparse structures in the 3D-PCA space. However, 
they differ in degrees and spatial layout of network-level traffic congestion.  

 
Figure 4. Congestion patterns of the identified clusters: (a) and (b) on left are respective 

“most-congested exemplars” of the 2 pink/purple sub-clusters of “light congestion”; (c) and (d) on 

right are respective “most-congested exemplars” for black/green sub-clusters of “heavy congestion”. 

 
In Figure 4(c) and (d), we compare the exemplars of the two sub-clusters labeled by black and 
green legends in Figure 3 respectively. Generally, the exemplar in Figure 4(d) contains more 
busy links. Furthermore, although the central region of the network is highly congested in 
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both exemplars, the area to which network-level traffic congestion extend is wider in the 
exemplar shown in the Figure 4(d), especially in suburb regions. This implies a different 
setting of traffic scenarios in the simulation.  

FROM STATE CLUSTERING TO CATEGORIZING DAILY EVOLUTION  

In a typical setting of traffic scenario simulation, the whole traffic network is free-flowing at 
the beginning. Subsequently, traffic congestion emerges and becomes heavier and heavier 
until reaching the peak of traffic jam in rush hours. Finally, the network-level states return to 
free-flowing gradually. Therefore, network-level traffic states evolve in circular trajectories in 
the PCA space, as shown in Figure 5. Along the trajectories, transitions from the free-flow 
state to clusters corresponding to different types of network-level congestion patterns imply 
totally different temporal dynamic patterns of network-level traffic states. Comparing Figures 
5 and 3, it is clear that the partition of global traffic states obtained with our method also 
corresponds to a categorization of the daily evolution of traffic, with green, pink and purple 
sub-clusters each corresponding to a subset of the possible daily dynamics.  

 
Figure 5. The evolution trajectory of network-level traffic states, projected in 3D-PCA space 

In order to verify this, we select two kinds of daily trajectories: both start from the 
free-flowing state but reach peaks of traffic congestions in the clusters labeled by pink (one of 
the 2 “light congestion” sub-clusters) and black legends respectively. Each trajectory is 
composed by observations of network-level traffic states at 48 time steps in our benchmark 
database. For each time step, we take the mean traffic index value of all 13627 links in the 
network as a crude measure of global traffic state at the current time. The lower it is, the 
heavier congestion occurs in the network. Within each type of trajectories, we calculate 
average of the mean traffic index at each time step, which results in a 48-D sequence of 
average values as a general temporal dynamic pattern of global traffic states in the 
corresponding type of trajectories. Figure 6 compare the two dynamic patterns. As we can see, 
trajectories with its peak of congestion located in the cluster labeled by black legends contain 
traffic jams that have longer durations and heavier congestion at their peak points. These two 
different temporal evolution processes of network-level traffic states represent different 
settings of requirements and supplies of traffic resources in the network. Crude as it is, this 
analysis provides us a hint that we could find typical temporal patterns of network-level 
traffic patterns based on the clustering results.   
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Figure 6. Examples of daily temporal evolutions, respectively for a day with peak congestion inside 

the “pink” sub-cluster and for another day with peak into “black sub-cluster” 

CONCLUSION 

In this paper, we have presented a new traffic-mining approach for automatic unveiling of 
typical global evolution of large-scale road networks. Our method is based on 
locality-preserving non-negative matrix factorization of the traffic historical data. We use the 
obtained matrix factorization to project original high-dimensional network-level traffic 
information into a feature space of much lower dimensionality, into which we can easily 
clusterize the global network states and dynamics. Our first experimentations, on simulated 
data with a large realistic network of more than 13000 links, indeed show that our method 
allows to obtain meaningful partition of the attained global traffic states, and to deduce a 
categorization of the global daily evolution. 

Perspectives include application to real traffic data, and using the low dimensional 
representation and clustering results for modeling the temporal dynamic patterns of the 
network-level traffic states.  
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