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Abstract  –  In  this  paper,  we  propose  a  new  clustering  method  consisting  in  automated
“flood- fill  segmentation” of  the  U*-matrix  of  a Self-Organizing  Map after  training. Using
several  artificial  datasets  as  a  benchmark,  we  find  that  the  clustering  results  of  our  U*F
method are  good over  a  wide  range  of  critical  dataset  types.  Furthermore,  comparison  to
standard  clustering  algorithms  (K-means,  single-linkage and Ward) directly  applied  on the
same datasets show that each of the latter performs very bad on at least one kind of dataset,
contrary  to  our  U*F clustering  method:  while  not  always the  best,  U*F clustering  has  the
great advantage of exhibiting consistently good results. Another advantage of U*F is that the
computation cost of the SOM segmentation phase is negligible, contrary to other SOM-based
clustering  approaches  which  apply  O(n2logn)  standard  clustering  algorithms  to  the  SOM
prototypes.  Finally,  it  should  be  emphasized  that  U*F clustering  does not  require  a  priori
knowledge on the number of clusters, making it a real “cluster-mining” algorithm.
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1   Introduction
Self-organizing feature maps (SOM) may be regarded as self-organized, topology-preserving
projections  of  high-dimensional  data  onto a  two-dimensional  map [2].  This  map provides  a
very useful and directly interpretable view of some characteristics of the analysed dataset, in
particular  its  cluster  structure  [10].  On  top  of  this  ordered  floor  space,  the  U-matrix  (first
introduced  in [7])  gives insights  into  the  local  distance structures  of  the  data  set:  U-matrix
visualization of trained SOM has now been for some time in the SOM community a commonly
used  and  powerful  tool  for  examining  internal  data  structure  of  high-dimensional  datasets.
Most visual or algorithmic segmentations of large SOMs was done on this representation of
the map (see for instance [11], [12]). This had motivated a first  approach of semi-automated
segmentation  based  on  a  flood-fill  algorithm applied  to  U-matrix,  which  has  recently  been
proposed in [3]. However,  U-matrix depicts distances inside a cluster in the same manner as
distances  between  different  clusters.  This  may  prevent  the  detection  of  clusters  in  some
datasets.  For this  reason,  an enhancement of the U-matrix (called U*-matrix)  taking density
information into account has been proposed in [6]. In the present work, a clustering algorithm
based  on  U*-matrix,  and  using  the  “flooding”  metaphor  is  proposed.  For  some  critical
datasets, the performance of this algorithm, that we nicknamed U*F, is compared to standard
clustering algorithms.
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2    U*F clustering method
2.1    U-matrix
The U-matrix has become the standard tool for the display of the distance structures of the input
data on ESOM (Emergent SOM, i.e. SOM containing large enough number of neurons, typically
several thousands, in order to obtain an interpretable 2D-projection of the studied dataset [4]). A
U-matrix is constructed on top of a two-dimensional SOM grid. Let  n be a neuron on the map,
NN(n) be the set of immediate neighbors on the map,  w(n) the weight vector associated with
neuron n, then:
 U-height(n) = mNN(n) d(w(n),w(m)), where d(x,y) is the distance for input data space.
The U-matrix is a display of the U-heights on top of the grid positions of neurons on the map [4]. 
A U-matrix is usually displayed as a grey level picture [9], or as a 3D landscape [5]. 

2.2   Flood-fil l  segmentation of a U-matrix
The SOM segmentation algorithm proposed in [3] was a simple area-filling algorithm applied to
the U-matrix of the SOM. More precisely, let  U-height(i,j) be the U-matrix value at position (i,j)
on the SOM grid. Then, the following region-growing algorithm was applied:

- empirically define, for each visually-identified cluster Ck, a threshold distance dmink 
- start from any neuron ni0,j0 which is clearly inside the cluster Ck 
- apply to (i0,j0, dmink, k) the following recursive procedure:

floodFill(i, j, dmink, k)   {
   if (i,j) is inside the SOM grid range, then:
      if (ni,j is not tagged as member of Ck) and (U-height(i,j) < dmink), then do:
           - tag ni,j as member of Ck

           - call floodFill(i+1,j,dmink,k)   - call floodFill(i-1,j,dmink,k)
           - call floodFill(i,j-1,dmink,k)    - call floodFill(i,j+1,dmink,k)    
  }

This procedure applied to U-matrix produces good results  (see [3]),  as long as the U-matrix
exhibits  well-separated zones for  each data  cluster.  This  is  not  always the  case in  practice,
especially when closely neighboring clusters have low density near their “contact zone”, hence
the idea of applying it to U*-matrix instead.  One might also wonder if improvement could be
obtained  by  using  the  actual  inter-neuron  distances  (d(w(ni,j),w(ni+1,j)),  etc...)  to
propagate on a different criteria in each direction, instead of using for all four directions the
mean of  distances  to  neighbors.  In  fact,  according  to  our  experiments,  this  seems to  make
things worse, because then frontiers are more easily crossed-over, forcing to choose a lower
threshold and thus leaving the “basins” partially unfilled.

2.3    U*-matrix
In dense  regions  of  the  data  space,  the  local  distances  depicted  in  a  U-matrix  are  presumably
distances  measured  inside  a  cluster.  Such  distances  may  be  disregarded  for  the  purpose  of
clustering. In thin-populated regions of the data space, however, the distances matter. In this case
the U-matrix heights correspond to cluster boundaries. This lead to the definition of a U*-matrix,
which combines  the distance-based U-matrix  and a density-based P-matrix  defined in [6].  The
P-height of a neuron n, with associated weight vector w(n), is defined as: P-height(n) = p(w(n),X)
where p(x,X) is an empirical density estimation at position x in the space points distribution of
dataset X. In principle, any of the various existing methods could be used for the estimation of
density. In practice, we use the Pareto Density Estimation, which consists in counting data points
inside a hypersphere centered on point  x, and with a radius equal to the “Pareto radius” (see [6]
and references therein for more details).
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The U*-matrix is then derived from a U-matrix following these lines:
- when the data density around a weight vector of a neuron is equal to the average data density,

the heights shown on a U*-matrix should be the same as in the corresponding U-matrix;
- when the data density around a weight vector of a neuron is big, local distances are primarily

distances inside a cluster; in this case the U*-matrix heights should be low;
-  when  the  data  density  around  a  weight  vector  of  a  neuron  is  lower  than  average,  local

distances are primarily distances at a border of a cluster; in this case the U*-matrix heights
should be higher than the corresponding U-height. 

This leads to the following formula: let  U-height(n) denote the U-matrix value at neuron  n, let
mean(P) denote the mean of all  P-heights, and  max(P) the maximum of all  P-heights,  then the
U*-height for neuron n is calculated as:

U*-height(n) = U-height(n) * ScaleFactor(n), with

ScaleFactor(n)  = 1
)max()(

)()(





PPmean
PmeannPheight

This  definition  ensures  that  U*-height<U-height when  P-height>mean(P) (with
U*-height=0 when  P-height=max(P))  which  happens  inside  clusters,  while  on  the
contrary  U*-height>U-height when  P-height<mean(P) which  normally  happens
essentially between clusters.

2.4    U*F clustering
U*F clustering is the application to the U*-matrix of an improved version of the segmentation
algorithm described in §2.2. U*-heights are used instead of U-heights, and the region-growing
procedure has been further automated: the threshold for stopping the region-growing process
is now automatically determined by choosing the value above which the filled area suddenly
grows dramatically (which reveals an overflow in a neighboring region), as shown below. The
threshold value is simply determined by measuring the size (in pixels) of the grown-region for
several (typically 100) evenly spaced values of threshold in the [0;1] interval, and looking for
the point  of  maximum gradient  of  the  regionSize=f(threshold)  function.  This  can produce a
meaningful choice of threshold value only if the map it is applied to exhibits some relatively
well-defined “basins”, which is generally enhanced by using U*-matrix instead of U-matrix.

Figure  1:  typical  numberOfPixels=f(threshold)
curve,  showing  the  pixel  number  of  the  region
grown by the flood-fill algorithm as a function of the
dmin threshold value. On this example, the optimal
threshold value is clearly identified by the large step
near dmin=0.45.

3   Experiments
3.1    Datasets
Atom:  The Atom dataset (see fig.2a) is 3D and consists in two clusters A and B of 400 points
each.  Cluster  A fits  within  a sphere  of  radius  11.5 around the  origin.  Cluster  B fits  within  a
spherical shell with minimal and maximal radius 48.5 and 51.5, also centred on the origin. The
minimal distance between the two subsets is far bigger than the diameter of A. This clustering
problem is difficult since the clusters are not separable by any hyperplane. Cluster A is much more
dense than B. The inner distances of cluster B are up to twice as big as the distances from A to B. 
WingNut: The WingNut dataset (see figure 2a) consists in two symmetric data subsets of 500
points each. Each of these subsets is an overlay of equal spaced points with a grid distance of
0.2 and random points with a growing density in one corner. The data sets are mirrored and
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shifted such that  the gap between the subsets is  bigger than 0.3. Although there  is  a bigger
distance in  between the  subsets  than within  the  data  of  a  subset,  clustering algorithms like
K-means parameterized with the right number of clusters (k=2) produce classification errors. 

Figure 2a: some of the artificial datasets used in the experiments (left: 2D projection of Atom; right: WingNut).

Lsun: Lsun consists in three well-separated 2D clusters (two with 100 points, and one with 200
points). The inter-cluster minimum distances, however, are in the same range or even smaller than
the inner-cluster mean distances.
TwoDiamonds: The TwoDiamonds dataset (see figure 2b) consists in two clusters with 300 points
in each. Each cluster points are uniformly distributed within a square, and at one point the two
squares almost touch (see [6]). This dataset is critic for clustering algorithms using only distances.

Figure 2b: some of the synthetic datasets used in the experiments (left: TwoDiamonds, right: ChainLink).

ChainLink: The ChainLink dataset (see figure 2b) has been used in [8] to show that large SOMs
(ESOM) clustering is different from K-means. It consists in two tore-shaped clusters of 500 points
each, which are intertwined like the links of a chain. The clusters, although well separated, are
difficult to cluster since they are not separable by any linear or quadratic manifold.

3.2    U*F clustering results
For the “Atom” dataset, U*F clustering produces an absolutely perfect cluster identification,
as illustrated by the confusion matrix below on the left. We show results with toroid SOM on
this dataset to illustrate applicability of U*F on that kind of SOM; if planar topology is used
on Atom, U*F results are still excellent, except that one of the clusters ends up split in two.  

Clusters determined
by U*F method

1 2 Total

True clusters of
Atom dataset

1 400 0 400
2 0 400 400

Total 400 400
Figure 3a: Atom dataset U*-matrix segmentation

determined by U*F;  the  upper and lower zones are the
same because the map topology is toroidal.

Performance of U*F clustering on the Lsun dataset is nearly as perfect. As shown on fig.3b,
the number of clearly separated zones on the U*-matrix (visually determined) is 3, which is
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exactly the number of true clusters. The resulting clustering for Lsun dataset is nearly perfect,
except for 5 examples from true cluster #3 which are left “unclassified” (see table below).

Figure 3b: Lsun dataset U*-matrix segmentation
determined by U*F method

Clusters determined 
by U*F method

1 2 3 None Total

True clusters of 
Lsun dataset

1 200 0 0 0 200
2 0 100 0 0 100
3 0 0 95 5 100

total 200 100 95 5

The performance of U*F clustering on WingNut dataset  is  slightly less good: as shown in the
confusion matrix below, a significant proportion (9%) of examples are mistakenly left isolated in
none of the clusters. However, it is important to notice that absolutely no example was assigned to
the wrong cluster, and the number of clusters was very clearly and automatically identified as 2, as
can be seen on figure 3c.

Clusters determined by U*F
1 2 None Total

True clusters of
WingNut dataset 

1 455 0 45 500
2 0 456 44 500

Total 455 456 89
Figure 3c: WingNut dataset U*-matrix

segmentation determined by U*F method.

U*F outcome on the TwoDiamonds dataset is similar: still no example placed in the wrong cluster,
but 12% of the examples mistakenly left isolated in none of the clusters, as shown on the resulting
confusion matrix below:

Figure 3d: TwoDiamonds dataset U*-matrix
segmentation determined by U*F method

Clusters determined by U*F
1 2 None total

True clusters of 
TwoDiamonds dataset

1 259 0 41 300
2 0 270 30 300

total 259 270 71

On the “ChainLink” dataset, U*F produces 3 regions (see figure 3e), even though visual inspection
of the U*-matrix clearly suggests 2 separated regions (which is the true number of data groups).
However, the “extra” region is entirely within one of the true data groups, so that the consequence
is just an artificial division of one of the actual groups in two clusters. On this particular dataset,
the U-matrix is in fact easier to segment than the U*-matrix (see §3.3).

Figure 3e: ChainLink dataset U*-matrix
segmentation determined by U*F method.

Clusters determined by U*F

1 2 3 None total
True “clusters” of
ChainLink dataset

1 471 0 0 29 500
2 0 321 153 26 500

total 471 321 153 55
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3.3    U*F variant
In some isolated cases, it  seems that a better result  can be obtained by applying U*F to the
U-matrix instead of the U*-matrix. For instance, using this variant of U*F on the ChainLink
dataset significantly improves the result (see figure 4 and table below).

Figure 4: SOM segmentation for ChainLink when
applying U*F to the U-matrix instead of the U*matrix.

Clusters determined by
U*F variant

(segmentation based on
U-matrix instead of

U*-matrix)

1 2 None total
True “clusters” of
ChainLink dataset

1 500 0 0 500
2 0 500 0 500

total 500 500 0

This U*F variant can also be useful for datasets for which at least one of the input component is
discrete-valued. Because computation of the U*-matrix requires an evaluation of local density in
the input space (see §2.3), it is not readily applicable to these kinds of datasets. However, since the
U*F variant described above only requires the U-matrix, it is still possible to apply this variant for
these categories of datasets, as illustrated on the following example.

The  “dermatology”  dataset  (originating  from Gazi  University  school  of  medicine  and  Bilkent
University Computer Science department, Ankara, Turkey, and available on the machine-learning
database  repository  of  University  of  California  at  Irvine,  located  at  URL
http://www.ics.uci.edu/~mlearn/MLSummary.html)  contains  358  examples
corresponding to 6 categories of erythemato-squamous diseases. Each example is a 34-dimensional
vector,  with all-but-one components  discrete-valued.  Because of  this,  U*-matrix,  as  explained
above, is not readily computable for this dataset.  But U-matrix can be computed, and the U*F
variant  applied,  with  the  results  illustrated  below.  The  number  of  regions  was  visually
determined by inspection of the U-matrix, and considering the region-growing outcome.

Figure 5: segmentation obtained with U*F
algorithm applied to U-matrix (instead of
U*-matrix) for the dermatology dataset. 

Cluster
#1

Cluster
#2

Cluster
#3

Cluster
#4

Cluster
#5

Outside
clusters

Psoriasis 102 - - - - 9
Pytir_rubra_pilaris - 19 - - - 1
Lichen_planus - - 70 - - 1
Pytiriasis_rosea - - - 47 - 1
Seboreic_dermatitis - - - 57 - 3
Chronic_dermatitis - - - - 44 4

The  above  table  shows  that  the  U*F  algorithm  applied  on  U-matrix  produced  very  good
results.  It  was  not  able  to  distinguish  two  of  the  actual  categories  (pytiriasis_rosea  and
seboreic_dermatitis,  which end up in the same cluster),  but there is absolutely no mixing of
examples from different real categories,  and only 5.4% of the examples are left  outside any
cluster.
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3.4    Comparison with other clustering algorithms
As  a  comparison,  we  applied  some  standard  clustering  algorithms  directly  to  the  same
artificial  datasets.  We  chose  on  purpose  three  rather  different  types  of  algorithms:  single-
linkage and Ward clustering which are two very different kinds of hierarchical agglomerative
techniques, and K-means (known for its bias towards spherical clusters). Below is a summary
of the results:

Dataset SOM 
topology

Single-linkage Ward K-means U*F clustering

Atom  Toroidal
(50x82) Perfect

34 % 
in wrong cluster

28 % 
in wrong cluster Perfect

Lsun Planar 
(50x82)

25 % 
in wrong cluster

23 % 
in wrong cluster

28 % 
in wrong cluster

No error
(but 1 % not in any cluster)

WingNut
Planar 
(50x82)

50 % 
in wrong cluster

4 % 
in wrong cluster

4.6 %
in wrong cluster

No error
 (but 9 % not in any cluster)

ChainLink Planar 
(50x82) Perfect 23 % 

in wrong cluster
35 % 

in wrong cluster
No error 

(but 1 group split in 2, and 
 5 % not in any cluster )

Two
Diamonds

Planar 
(40x50)

50 % 
in wrong cluster

0.5% 
in wrong cluster Perfect

No error
(but 12 % not in any cluster )

It can be seen that  in  our experiments,  U*F clustering never mixed together examples from
different  true  clusters,  which  was  not  the  case  for  neither  single-linkage,  nor  Ward,  nor
K-means clustering.  On the other  hand,  a sometimes significant  proportion of the  examples
were not affected to any cluster by U*F, and occasionally a true cluster ended divided in two.
 

4   Discussion
According to our experiments, the U*F clustering method presented in this paper generates not
perfect,  but consistently good clustering results.  In particular,  and in contrast  to some common
standard clustering algorithm, it rarely mixes together data points that actually belong to different
true clusters. A first promising result on real data was obtained on a medical dataset with the U*F
variant using only U-matrix instead of U*-matrix (see §3.3). However more tests should now be
conducted to confirm the efficiency of our U*F method, especially on various real datasets, as well
as on artificial datasets where the clusters are not well separated but only form more dense areas in
the data. Some very preliminary results (not yet fully analyzed in time to be formally exposed in
the present paper) on the last kind of dataset give indication that U*F still works rather well on ill-
delimited  clusters,  except  for  a  tendancy  to  leave  “unaffected”  to  any  cluster  an  important
proportion of the data (in other words, it seems to identify correctly essentially the “cores” of the
clusters). The two main drawbacks of U*F clustering identified so far are thus:

a) Building the U*-matrix requires the computation of local density in the input space, which
makes it not very well suited for datasets with at least one discrete-valued component.

b)  For  several  datasets ,  U*F  appears  to  mis takenly  leave  a  s ignif icant
proport ion  of  the  examples  isola ted in  none of the clusters.

However, it should be noted that for datasets corresponding to the first case, it is still possible
to apply the flood-fill segmentation on the U-matrix instead of U*-matrix, and still obtain an
acceptable result with this U*F variant, as illustrated in §3.3. The other identified weakness of
U*F  clustering  can  in  fact  be  regarded  as  an  advantage  compared  to  other  clustering
algorithms  which  force  categorization  of  every  example  in  one  of  the  clusters,  sometimes
leading to an important number of categorization errors.
Also, it  could be argued that  SOM segmentation by a classical clustering method applied to
the  SOM  prototypes,  as  proposed  by  [12],  is  more  mathematically  sound.  It  would  be
interesting to compare the clustering results of both approaches. However, it should be noted
that,  as  pointed  out  in  [1],  standard  hierarchical  clustering  techniques  have  an  over-all
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computational complexity of at least O(n2logn) where n is the number of elements to cluster. A
great advantage of our U*F method is that the computation cost of the segmentation phase is O
(n) where n is the number of SOM units, so that its global complexity is essentially that of the
computation of the U*-matrix (or just the U-matrix, in case the variant of U*F is used).

5    Conclusion
We have  proposed  a  new clustering  method,  called  U*F clustering,  and  based  on  automated
“flood-fill  segmentation” of U*-matrix of Self-Organizing Maps after training. It was shown by
testing  its  clustering  performance  on  several  critical  datasets  that  our  U*F  method  shows
consistently  good  clustering  results.  This  “consistence”  is  in  contrast  with  other  clustering
algorithms (K-means, single-linkage, and Ward) to which we compared U*F: they may sometimes
perform better than U*F, but each of them performs very poorly on at least one particular kind of
datasets. Moreover, our U*F has the following advantages:

- when the categorization is not perfect, examples are left “isolated” rather being attributed to
the wrong cluster ;

- no a priori hypothesis for the number of clusters is required ;
- the global computation cost is essentially equal to that of the computation of the U*-matrix, in

contrast with other approaches applying standard clustering algorithm to SOM units.
In conclusion, U*F clustering method seems to be a very performant alternative to usual clustering
algorithms (such as K-means, single-linkage, Ward, etc...), and a promising data-mining tool for
"blind cluster discovery". 

References
[1]  M. Dash  and  H. Liu  (2001),  Efficient  hierarchical  clustering  algorithms  using  partially

overlapping partitions, Lecture Notes in Computer Science, vol. 2035, p. 495-507. 
[2]  T. Kohonen  (1982),  Self-Organized  formation  of  topologically  correct  feature  maps,

Biological Cybernetics, vol. 43, p.59-69.
[3]  D. Opolon  & F. Moutarde  (2004),  Fast  semi-automatic  segmentation  algorithm for  Self-

Organizing Maps, In Proc. of ESANN'2004, Bruges, 28-30 avril 2004, p. 507-512.
[4] A. Ultsch (1992), Self-Organizing Neural Networks for Visualization and Classification, In

Proc. Conf. Soc. for Information and Classification, Dortmund (Germany), April 1992.
[5]  A. Ultsch  (2003), Maps for  the  Visualization  of  high-dimensional  Data  Spaces,  In  Proc.

WSOM’03, Kyushu (Japan), p. 225-230.
[6]  A. Ultsch  (2003),  U*-Matrix:  a  Tool  to  visualize  Clusters  in  high  dimensional  Data,  In

Research  report  Dept.  of  Mathematics  and Computer  Science,  University  of  Marburg
(Germany), No. 36.

[7] A. Ultsch & H.P. Siemon (1990), Kohonen's Self Organizing Feature Maps for Exploratory
Data  Analysis,  In  Proc.  Intern.  Neural  Networks  Conf.  (INNC’90),  Dortrecht
(Netherlands), Kluwer Academic Press, Paris, p. 305-308.

[8]  A. Ultsch  &  C. Vetter  (1994),  Self-Organizing-Feature-Maps  versus  statistical  clustering
methods:  a  benchmark.  FG Neuroinformatik  & Kuenstliche  Intelligenz,  University  of
Marburg, Research Report 0994. 

[9] J. Vesanto et al. (1999), Self-organizing map in Matlab: the SOM toolbox, In Proceedings of
the Matlab DSP Conference, Espoo, Finland, November 1999, p. 35-40.

[10]  J. Vesanto  (1999),  SOM-based  data  visualization  methods,  Intelligent  Data  Analysis,
vol. 3 (2).

[11]  J. Vesanto  (2000),  Using SOM in data  mining,  Licentiate thesis,  Helsinki  University of
Technology.

[12]  J. Vesanto  &  E. Alhoniemi  (2000),  Clustering  of  the  Self-Organizing  Map,  IEEE
Transactions on Neural Networks, vol. 11 (3).


