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Abstract— This paper deals with real-time visual detection,
by mono-camera, of objects categories such as caend
pedestrians. We report on improvements that can bebtained
for this task, in complex applications such as adveed driving
assistance systems, by using new visual features a$aBoost
weak classifiers. These new features, the “connedteontrol-
points” have recently been shown to give very gooesults on
real-time visual rear car detection. We here reporton results
obtained by applying these new features to a publiateral car
images dataset, and a public pedestrian images datse. We
show that our new features consistently outperfornpreviously
published results on these databases, while stilperating fast
enough for real-time pedestrians and vehicles detéan.

|. INTRODUCTIONAND RELATED WORK
AUTONOMOUS vehicles, as well

real-time perception analysis. This environmentception
can be done using various sensors such as lidadsrs,
ultrasonic devices, etc...
sensors, visual perception can provide very ri¢brination
for very low equipment costs, if an abstract enoaglne
analysis can be conducted in real-time.

One of the key bricks required for such an autothate -

scene analysis is efficient visual detection of tr@smmon
moving objects in car environment: vehicles andegstians.

Many techniques have been proposed for visual bbjec

detection and classification (see eg [10] for aawwof some
of the state-of-the-art methods for pedestrian aiete,
which is the most challenging). Of the various niaeh
learning approaches applied to this problem, oely &re
able to process videos in real-time. Among those dames,
the boosting algorithm with
successfully extended to machine-vision by Violalénes
[4][5]. The adaBoost algorithm was introduced %%y
Y. Freund and R. Shapire [1][2], and its princifgeo build

a strong classifier assembling weighted weak classifiers
iteratively by using successi

those being obtained
weighting of the examples in the training set.

as most Advanced
Driving Assistance System (ADAS) functions, require

However, compared to othe

feature selection was
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Fig.1: Viola &Jones Haar-like features

These weak classifiers compute the absolute diftere
between the sum of pixel values in red and bluasafeee
figure 1), with the respect of the following rule:

it | Area( A) — Area(B)| > Thresholdthen True

else False

™

—i
Fig. 2: Some examples of adaBoost-selected Viatesléeatures for
car detection (top) and pedestrian detection (bgtto

However, the adaBoost outcome may strongly depentie
family of features from which the weak classifiare drawn.
ut rather few investigations have been done ongusther
inds of features with adaBoost: Zhu et al. in [H&fined
and successfully applied adaBoost features diréclpired

Most published works using adaBoost for visual obje fom the Histogram of Oriented Gradient (HOG) ammio

class detection are using the Haar-like featurasalig
proposed by Viola & Jones for face and pedestregeation.
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initially proposed (combined with SVM) by Dalal [t2
Baluja et al. in [14] and Leyrit et al. in [15] ouse pixel-
comparison-based feature very similar, althoughpkfiad,

to our lab’s control-points approach ([6][7][8][9]very
recently Pettersson et al. in [16] proposed efficgradient-
histogram-based features inspired from HOG.



1. CONTROL-POINTS ADABOOST FEATURES some usual contrast between the car itself andmepist
below, with shadow and dark tyres. Similarly, tbevér-left
feature seems to detect some contrast between tpades
center and the background. Such interpretationetdcted
control-points features is not always very cleanyéver.

Several years ago, Abramson & Steux [6][7] propcased
original set of features, the control-points, faster and
more illumination-independant adaBoost classifiers.

These features operate directly at pixel level dae

among 3 different possible resolutions) and atemiihation- AdaBoost requires a "weak learner’, i.e. an aldonit
independent. Each of these features can be computedly \ynich will select and provide, for each adaBoosipsta
a few pixel comparisons, which makes them extrerfesy, "good” feature (i.e. with a “low-enough” weightedrer
thus providing very good real-time performances € measured on the training set). The weak learned lse
resulting detector. Arbitra_r)_/ points are divided two v/igla and Jones is just an exhaustive search of all
groups, one called the positive set and the secahed the 180 000 possible features in their set of featuBes as our
negative set. Examples are classified as positivehe  control-point family features is absolutely hugkefe are
following condition applies: more than 1% of them for a 36 x 36 detection window size),
min{l?*,i :l---,N+})—maX{|:’j_,j :l---,N_}) >V a systematic full search is definitely n_ot ppss_ibWe
therefore use as weak learner a genetic-like heussarch
OR ) . .. in feature space: an evolutionary hill-climbing ciésed in
mln{P,- ] :l---,N_})—maXtF? i1 :l---,N+}) >V more details in [8].
The core of our heuristic search weak-learner idetine
V is the minimum separation threshold between the twsPecific mutations adapted to the feature-type, apdly
point groupsPi+ a point from the positive groupj' a point them to a population of |n|t|a.”y random featur@SSingle
from the negative group, amdl andN. the number of points Mutation of one control-points feature typicallynststs in

in the respective groups. adding, moving, or removing one of the points, diag
working resolution, or modifying the value of thhei&d V.

When evolution provides no more improvement, thetbe
feature of the population is selected and the wealaer

0 ’ 255 returns it to be added as the next adaBoost feature

v

Fig. 3a: Positive-classified example with respect
to the threshold V.
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Fig. 3b: Negative-classified example.

In a linear representation of the pixel valuesggample
is classified as positive if the two point groups aeparated
by at least the value of threshald(see figure 3a). Negative
examples are those that do not respect this clesistat:
values of the control-points of the two groupsiaterleaved
(see figure 3b).

One can see on the figure 4 some examples ofatentr
points features acting on vehicle or pedestriareaimn.
Each feature operates at either full-, half- or rtpra
resolution of the minimal detection window size X882 for
the lateral car case, and 18x36 for the pedest@@e). An  Fig. 4: Some examples of adaBoost-selected CoRtinits features for
examined image or sub-window is thus resized t®sdh® car detection (top) and pedestrian detection (botioe). Some features
resolutions before the features are applied operate at full resolution of detection window (&ghtmost bottom), while

. PP ’ . others work on half-resolution (eg leftmost bottpor)even at quarter-

On the upper-left example of figure 4, the featwi# resolution (third on bottom line).
respond positively if the 2 pixels values (on trerectly
resized image) corresponding to the 2 white squatdsave
higher luminance (with margia V) thanall 3 pixels values
corresponding to the 3 red squares (or oppositds T
particular feature can therefore be interpretedietecting




Ill. NEW“CONNECTEDCONTROL-POINTS' FEATURES

As presented in [9], we have recently explored hyges
of adaBoost features in the context of rear caed®mn. It
turned out that among those, the new “connectedraen
points” significantly outperformed all others. ThHesature is
a particular form of the control-points feature céintains 2
up to 12 points, and the principle is exactly tlaens as
described in Il. The difference is that the “coioints” of
a given feature are constrained to remain connealiéu
8-connectivity, which implies each point must towiother
oneat least by a corner

As mentioned in section Il, the classical controifps
features family is extremely large, and therefoifécdlt to
search efficiently by the weak-learner. By impositige
8-connectivity constraint, the search-space sizzedses to
~3x10"* possible combinations instead of 230which
makes it easier to explore efficiently for our listic.
Besides, the connectedness constraint will forch ésature
to focus on a more localized part of the detectirdow.

Fig. 5: Some examples of adaBoost-selected
new “connected control-points” features for lakear detection (top)
and pedestrian detection (bottom line).

In figure 5 are shown some examples of the “coratkct

control-points” features resulting from the adaBdoaining

process for cars and pedestrians. The evolutionenyistic

weak-learner we use is exactly the same as fordatdn
control-points, except that the mutation operatas heen
modified to maintain the connectedness constragtan be
seen by comparison to figure 4, because of theexiadness
constraint, each of the new features tend to opeoat a

result, our connected-control-points features argoime way
a kind of generalization of Haar-like features, tnutch more
flexible in shape so that they can adapt themsdtvatetect
any particular contour or contrast geometry. Note o
examples of figure 5 that the features we obta@a eren

more general and flexible than the generalization o

Viola&Jones type features proposed by Treptow aelll id
[17],
performances than with standard Viola&Jones Haar-li
features.

IV. EXPERIMENTS AND RESULTS

Encouraged by our good results on rear car detef2io
we decided to test our new “connected control-gdint
features for other kind of objects encountered éhicle
environment: lateral cars, and pedestrians. Inrom@ellow
comparisons with other published methods, we h#nesen
to work on publicly available databases: the “latears” by
UIUC [11], and the pedestrian database collecteMbyder
and Gavrila [10].

A. Lateral cars database

The lateral cars database contains 500 positivengbes
and 500 negative examples, all of size 100x40 pixEbr
evaluation, we use, as in [11], the set106B wider field
independent imagesontaining 139 lateral carat various
scales ranging from roughly 0.8 to 2 times the size afscin
the training images. This test sebmes with an associated
ground truth allowing automated computation of eotr
detection and false alarm rates.

PR_lateralCar_multiScale

it
—5—a

0,95 -

0,8 1

0,85

0,8 feeenine

recall

0,75 -4 —#— connectedCP800_80x32

i —~u—CFB00_80x32
| —e—VJB0D_80x32

0,65 1 —f

—e—VJ100_80x32

0,6 ML
0 o1

02 03 04 05 06 07
1-precision

Fig. 6: Precision-recall curves for adaBoost ldteaa detectors obtained
with connected-control-points features (upper gmene), standard

control-points (cyan curve), and ViolaJones Halee-features (maroon)
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All trainings were done for 800 boosting steps.urég6
shows precision-recall curve of resulting detecttained

particu|ar region (as can rea_d“y be seen on f|gE)e with various feature families. We use precisiomibmetrics

contrary to basic control-points features whose n{goi

in order to allow easy comparison with (rather paesults

positions are sometimes disseminated throughout tBéthe method presented in [11] on the same dagatfasr

detection window (see eg bottom right on figure A3. a

new “connected control-points” features (upper eurand

with which they had obtained better detection
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best Area Under Curve with 0.91, instead of 0.88)
outperforms both our usual simple control-points] &laar-
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Fig. 7: Precision-recall for adaBoost lateral datection, when comparing
detectors with similar computation loads. At eqléwa computation time,
our new connected-control-points features cleautperform ViolaJone
Haar-like features.

B. Pedestrians database

The pedestrian database comprises 3 training set® a
test sets (each one of the 5 sets with 4800 pesivamples
and 5000 negative ones). As suggested in [10],
independent trainings were conducted on unionsaiftBe 3
training sets, and the evaluation was done on ttest2sets,
producing a total of 6 evaluations, to be averadgedeach
feature type. In each training, 2000 boosting stejese
allowed, therefore producing adaBoost detectorsralsing
2000 weak-classifiers.
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Fig. 7: Some detection results with our connectautol-points adaBoost
classifier, which illustrates its robustness téeast moderate occlusion.
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Fig. 9: Averaged ROC curves for adaBoost pedestii@ssifiers obtained
. L . with various feature families
If we compare detectors with similar computatioads

(in this particular setup, control-points featumgserate ~ 8
times faster than our implementation of ViolaJoHesr-like
features), then the superiority of our new conreectentrol-
points features over Haar-like features is evemrele (see
figure 7). It should be noted however that our Wimnes
classifiers were obtained using the same heuristak-
learner as for control-points (with adapted mutatio
operator), rather than usual full-search which \@oahyway
have been prohibitively long for a 80x32 detectwindow
size.

As one can see in figure 9, the classifiers obthiwih
the new “connected control-points” features havdarythe
best classification results. The Viola-Jones penforather
poorly, even when compared to “ordinary controlrpsi.

We also compared the performance of our new classif
to the Viola-Jones classifier performance repoited10],
which was obtained with openCV implementation. As be
seen on figure 10, our “connected control-pointstgstrian
classifier has a significantly better performanaehich
confirms the results obtained with our own impletaéon
(with which we did not use cascade for our compass.
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Fig. 10: ROC curves comparing our boosted “conmkectatrol-points”
(upper curve, green) to boosted ViolaJones casesét reported in [10].

Moreover, we finally compare to the best methogswred
in [10] on figure 11, where one can see that bagstiith
our new features seems to be even better than eke
algorithms (namely quadratic and RBF SVM, and NNF)LR
reported in [10].
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Fig. 11: ROC curves comparing our boosted connemettol-points (two
upper curves) to best algorithms results reporigd0].

It should be noted that the best algorithms frofi,[1o
which we compare on figure 11, are reported in [i®]
operate at ~ 250 ms per test sample on a 3.2 GitiRelV
PC, while our boosted classifier containing 2000rtieected
control-points” features requires only ~0.4ms peest image
from the database, on a 2 GHz Intel Core2 laptop.

V. CONCLUSIONS AND PERSPECTIVES

We have presented a new feature type, which we call
“connected control-points”, for adaBoost traininfywisual
object classifiers.

We report here on test of these new features on two
publicly available databases: one for lateral cans, one for
pedestrians on which many classification algorithinase
already been tested and results published. It mubshat the
adaBoost strong classifiers obtained with our neatures,
while being extremely fast (~0.4ms per pedestrianage
classification on a 2Ghz laptop), clearly outperfoboth
standard Viola-Jones boosted cascade and even disé
powerful (but very slow) classification algorithmsported
so far on the pedestrian database.

Given previous tests conducted by us on real-tireeay
rear car detection application [9] that have alsows these
new “connected control-points” features to providetter
results than other features used in boosting, v tthese
new features have a very promising potential foprioming
real-time detection performance of visual objeassks in
general, and particularly the kind of objects tehoduld be
efficiently detected and tracked in intelligent ich
bapplications.
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