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Abstract Human-Robot Collaboration in industrial con-

text requires a smooth, natural and efficient coordi-

nation between robot and human operators. The ap-

proach we propose to achieve this goal is to use on-

line recognition of technical gestures. In this paper, we

present together, and analyze, parameterize and eva-

luate much more thoroughly, three findings previously

unveiled separately by us in several conference presen-

tations: 1/ we show on a real prototype that multi-users

continuous real-time recognition of technical gestures

on an assembly-line is feasible (≈ 90% recall and pre-

cision in our case-study), using only non-intrusive sen-

sors (depth-camera with a top-view, plus inertial sen-

sors placed on tools); 2/ we formulate an end-to-end

methodology for designing and developing such a sys-

tem; 3/ we propose a method for adapting to new users
our gesture recognition. Furthermore we present here

two new findings: 1/ by comparing recognition perfor-

mances using several sets of features, we highlight the

importance of choosing features that focus on the effec-

tive part of gestures, i.e. usually hands movements; 2/

we obtain new results suggesting that enriching a multi-

users training set can lead to higher precision than using

a separate training dataset for each operator.
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1 Introduction

The development of robots is currently increasing in

our society, and also in our industries. Social robots

have already been used in various contexts: assistant for

elderly people, stimulation for autistic children, guide

in museum or sale assistants in stores.

In the industrial context, robots are present since

the 1950’s. Until recently, they were always located in

isolated areas where operators are not allowed to go

while robots are running. In the last years, collabora-

tive robots emerged on assembly-lines. These robots are

smaller and can work in co-presence or in collaboration

with operators, in the same area. Issues arise with the

introduction of these robots. The first one is to guar-

antee the safety of the operators working nearby those
collaborative robots. Technology advances allowed to

develop “safe” robots, i.e. robots with with a limited

strength and embedded sensors to prevent any injury to

operators. A second issue is to make the collaboration

smooth and efficient between these robots and opera-

tors. In this study, we propose to use online recognition

of technical gestures to address the issue. We think that

gesture recognition can help the robot to synchronize

its tasks with the actions of operators, can allow the

robot to adapt its speed, and also can make it able to

understand if something unexpected happens. In this

paper, we use the word “gesture” to refer to the ac-

tions needed to perform the tasks on the assembly-line.

The rest of this article is composed of five sections.

In Section 2, we present related works, as well as our

own previous research, on Human-Robot Collaboration

in manufacturing and gesture recognition. In Section 3

we describe our real prototype and use-case, and how

to choose the gesture classes that should be recognized

for ensuring human-robot coordination. In Section 4,
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we summarize our end-to-end methodology to continu-

ously recognize technical gestures in real-time, includ-

ing a method to adapt to a new user our learnt ges-

ture recognition system. All our experimental results

are presented in Section 5. This section also includes in

5.2 new results highlighting the importance of choosing

features that focus on the effective part of gestures i.e.

usually hands movements, and in 5.5.2 new compara-

tive evaluations suggesting that enriching a multi-users

training set can lead to higher precision than using a

separate training dataset for each operator. Finally, we

recapitulate and conclude in Section 6.

2 Related and previous works

2.1 Human-Robot Collaboration in manufacturing

The first robots useful for men have been introduced in

factories in the 1950’s. These robots were able to per-

form repetitive, tiresome, and dangerous tasks. Since

then, industrial robots have been very present on as-

sembly-lines, working on specific areas, away from hu-

man operators. Although these robots are efficient, they

make assembly-lines not very flexible, and cannot be

used on assembling tasks where human presence is re-

quired. Nowadays, manufacturers tend to create mixed

environments, where robots and operators can work

on the same area. This new way of working combines

human skills (intelligence, adaptability and dexterity)

with robot skills (strength and repeatability). The in-

troduction of collaborative robots in factories provides

more flexibility and productivity (Hägele et al, 2002),

and relieves human operators from physically-demanding

tasks and/or from working using undesirable postures,

that can lead to musculo-skeletal disorders. These robots

are designed to be intrinsically safe: their strength is

limited, and they have built-in sensors which prevent

them to hurt operators which are nearby.

Sharing work between an operator and a robot can

be executed in different ways. They can work in col-

laboration on the same task, or on two different tasks

in the same area, in co-presence. Shi et al (2012) pro-

posed different degrees of work sharing. At the lowest

level, robot and operator do not have any contact and

work in two different spaces, but without any barri-

ers between them. On the second level, the operator

can go into the robot space, but this will automatically

halt it. Finally, in the upper level, the robot and the

operator cooperate on a common task. Other studies

have been done to prove the feasibility of collaborative

tasks with a robot, e.g. the assembly and disassembly of

pieces (Corrales Ramón et al, 2012), and the assembly

of constant-velocity joint (Cherubini et al, 2016).

However, sharing work between an operator and a

robot requires an adaptation from the operator. Human-

robot collaboration is not as natural as between hu-

mans, and new ways of communication must be estab-

lished. Hoffman and Breazeal (2007), have shown that

the anticipation on a future task can improve the ef-

ficiency and fluidity of a human-robot collaboration.

Dragan et al (2015), have demonstrated that legible mo-

tions from the robot during the execution of a known

task enable a more fluent collaboration with a human.

(Chen et al, 2015) proposed an approach for recognizing

hand gestures of a human operator during an assembly

task in collaboration with a robot co-worker. Schrempf

et al (2005) proposed a method to synchronize robot

and human actions using a Dynamic Bayesian Network.

Rickert et al (2007) presented a collaborative robot

that is equipped with speech recognition and visual

object recognition, and is able to follow the operator

hands. This robot uses these informations to anticipate

on the next task. Bannat et al (2011) introduced the

term “Cognitive Factory” for industrial environments

with cognitive capacities, in order to make the ma-

chines more autonomous. Lenz et al (2008) created a

smart collaborative workspace with several sensors to

enable the collaborative robot to understand their en-

vironment.

2.2 Gesture recognition

Gesture recognition consists in capturing and interpret-

ing human movements, allowing to understand which

action is being performed. It is a growing research field,

in which new technologies recently brought significant
progresses. Indeed, new sensors (like depth-cameras or

light and small inertial sensors) now enable an easy

and more complete capture of gestures. In the following

parts, we review and describe the usual successive steps

needed for creating a gesture recognition system.

2.2.1 Motion capture sensors

Different types of sensors have been used to recognize

gestures. The oldest, and historically most used, are

RGB cameras. With these cameras, it is possible to have

an almost complete (if few occlusions) understanding of

the scene and to be non-intrusive. Laptev and Linde-

berg (2003), Dollar et al (2005) and Oikonomopoulos

et al (2005) proposed methods to detect interest points

in RGB videos, and use them to describe the filmed

action. Wang et al (2009) proposed to use trajectories

of sampling points in successive frames to describe an

action.
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Depth-cameras are more recent, but already com-

monly used to recognize human actions, because of 3D

information they convey, which makes extraction of ges-

tures easier. Chen et al (2013) proposed a survey on

motion analysis using depth-data, Zhang and Parker

(2011) adapted to depth-video the cuboid RGB video

features, Biswas and Basu (2011) used movement of a

person filmed with a fixed depth-camera to recognize

gestures.

Inertial sensors are also used for gesture recogni-

tion, but are intrusive because they must be fixed onto

the user for capturing his/her movements. Bulling et al

(2014) proposed an “Activity Recognition Chain” to

recognize gestures with inertial sensors. Dong et al (2007)

and Junker et al (2008) used accelerometers to recog-

nize actions.

Data from several types of sensors can be used si-

multaneously to recognize gestures. Chen et al (2016)

used a depth-camera and a wearable inertial sensor to

recognize actions. To fuse the data coming from the

different sensors, a decision level scheme was adopted.

2.2.2 Computing features from sensors

Depending on the sensor that is used for capture of

movements, different types of features can be extracted.

In this section we focus on the extraction of features

from depth-images.

A first group of features are those related to the

global posture of the human, for example his skeleton.

Shotton et al (2011) used a large database, composed

of real and synthetic images maps, to learn a random

decision forest which is then able, using depth differ-
ences between pairs of pixels in the depth-map, to es-

tablish for each body pixel to which body part it be-

longs. Schwarz et al (2012) proposed another method

to find the skeleton of a person filmed with a depth-

camera, but which does not require pre-training on a

large database. They compute geodesic distances of each

point of the body part to the gravity center. Knowing

the standard structure of a human body, they estimate

locations of the body joints. Another group of meth-

ods consists in finding body parts in depth-map with-

out using any global information on the user’s posture.

Migniot and Ababsa (2013) use particles filtering with

a top-view depth-camera to determine the position of a

top human body. However, detection of hands in depth-

videos is still challenging because of the usually rather

low resolution of these sensors: only hands which are

close enough to the camera can be easily segmented.

Chen et al (2011) track the hands’ location and segment

them using a region-growing algorithm. Hamester et al

(2013) detect hands in depth images based on Fourier

descriptors of contours classified using a SVM. Joo et al

(2014) use boosting of depth-difference features for de-

tecting hands in depth images.

2.2.3 Machine-learning algorithm for classification of

gestures

Several machine-learning techniques have been used in

order to train a system to recognize human gestures.

SVMs (Support Vector Machines), HMMs (Hidden Markov

Models), and DTW (Dynamic Time Warping) have been

widely used.

SVMs enable to optimize the separation boundaries

between different classes in a feature space. Ke et al

(2007), Bregonzio et al (2009) and Schuldt et al (2004)

used SVMs to recognize actions in video.

Instead of using a fixed-size temporal window rep-

resented as a vector, HMMs can process inputs as a

flow of successive values. Furthermore, they are able to

recognize gestures independently from their temporal

duration. Yamato et al (1992) used HMMs to recognize

gestures in video. Xia et al (2012) recognized gestures

using the skeletons extracted from depth-video with the

method of (Shotton et al, 2011). Zhu and Pun (2012)

also used depth-images and HMMs to recognize ges-

tures. They track the locations of hands, and use their

trajectories to recognize the gestures performed. Cali-

non and Billard (2004) used HMMs to learn gesture

from demonstration. Aarno and Kragic (2008) proposed

a Layered Hidden Markov Model (LHMM) to model hu-

man skills and classify motions into basic action prim-

itives.

DTW is actually a method for time-series alignment

and similarity measure. For gesture recognition, it is

generally used first for selecting for each class a single

most representative template gesture. DTW similari-

ties with these templates can then be combined with

any similarity-based classification algorithm (a simple

Nearest Neighbor method in many case) for predicting

class of an unlabbeled gesture. DTW has been used for

instance by (Liu et al, 2009) to recognize actions based

on output of accelerometers worn by users. Sempena

et al (2011) similarly recognize actions with DTW, but

applied to 3D joint angles time evolutions estimated by

Kinect built-in skeletization. Reyes et al (2011) have

shown that recognition performance by this method can

be greatly improved by weighting differently each joint

angle depending on its impact on executed gesture.

Other methods are also used. Luo et al (2013) clas-

sified actions with a Bag-of-Visual-Words framework.

More recently, deep Convolutional Neural Networks ap-

proach was adapted to recognize actions in depth-maps:

Wang et al (2016) used weighted hierarchical depth mo-
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tion maps and three-channel deep convolutional neu-

ral networks to recognize actions with a small training

dataset.

2.3 Our previous work

We have been working since 2012 on technical gesture

recognition for collaborative robotics in factories. All

our research is conducted on real prototype ”cells” of

factory collaborative robotics developed by french au-

tomaker PSA (see Acknowledgements). After a feasi-

bility study using inertial sensors worn by operators

(Coupeté et al, 2014), we have conducted a first experi-

mentation of a less intrusive approach: using only a top-

viewing depth-camera for capture of gestures (Coupeté

et al, 2015). We have then highlighted in (Coupeté

et al, 2016b) the significant recognition rate improve-

ment achievable by complementing gesture capture from

depth-camera with data from inertial sensors placed on

tools. Finally in (Coupeté et al, 2016a) we began inves-

tigating the multi-users issue, and proposed a simple

but efficient way of adapting our gesture recognition

module to new operators.

In this paper, we put together all our methods and

algorithms recalled above as a proposed generic method-

ology and pipeline for technical gesture recognition. Fur-

thermore, we compare several feature sets (hands po-

sitions only vs. idem + arms postures, etc...), which

we had not done in our previous work, and show that

best results are obtained with descriptors related only

to the effective part of gestures (i.e. hands movements).

We also conduct new comparative study on user adap-

tation providing new results suggesting that enriching

a multi-users training set can lead to higher precision

than using a separate training dataset for each opera-

tor.

3 Our Human-Robot Collaboration prototype

We work on a real-life scenario where the worker and

the robot share the same workspace and cooperate. The

task is inspired from the assembly of motor hoses on

production-line supplies preparation. Presently, the as-

sembly process of motor hoses has some drawbacks: the

worker has to find the appropriate parts of motor hoses

among other motor parts, which is a lack of time and

increase the cognitive load of the worker. In our set-up,

a dual-arm robot and the worker are facing each other,

with a table separating them, see Figure 1. More details

on this real prototype are given below, and in (Coupeté

et al, 2015) and (Coupeté et al, 2016b).

Fig. 1 On top, our human-robot collaboration prototype. On
bottom, schematic description of our use-case: an operator is
standing in front of a table, taking and assembling parts that
are “handed” to him/her by a robot placed on the opposite
side of the table.

On an assembly-line, the mounting operations must

be executed quickly through a rather strictly-defined

succession of elementary and standardized sub-tasks.

To ensure a natural human-robot collaboration, the robot

has to perform its actions according to the task that the

operator is currently executing, in order to be useful at

the right time, without delaying the worker. In our use-

case, the assembling of motor hoses requires the worker

to take two hose parts respectively from left and right

claw of the robot, join them, screw them, take a third

part from the right claw, join it, screw it, and finally

place the mounted motor hose in a box. The only ac-

tions performed by the robot are giving a piece with

the right claw and giving a piece with the left claw.

The order of these sub-tasks and how the robot and

the operator should be coordinated is presented Figure

2. Such an analysis of the human-robot collaborative

work is essential to determine the gesture types that

the robot needs to recognize.

In order for the robot to be properly synchronized

with the human, it should be able to recognize sev-

eral gesture classes, that can be deduced from Figure

2. The first two are “to take a piece in the right claw”

and “to take a piece in the left claw”. The operator

can screw after the first gesture “to assemble”, or can

chose to screw later during the last assembly sub-task.

Therefore, the robot should be able to recognize “to

assemble” and “to screw”, so as to give at the correct

moment the third motor piece with its right arm. Fi-

nally, at the end of the assembly task, the operator puts

the assembled piece in a box, so it is interesting to rec-
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Fig. 2 Analysis of required coordination between Human
and Robot: on top, state-transition diagram for the oper-
ator tasks; on bottom, sequence diagram of operator-robot
interactions.

ognize this gesture in order to understand that a cycle

has just ended.

The set of gestures classes to be recognized by our

system is therefore rather straightforwardly deduced

from above-mentioned sub-tasks as:

1. to take a motor hose part in the robot right claw

(G1)

2. to take a motor hose part in the robot left claw (G2)

3. to join two parts of the motor hose (G3)

4. to screw (G4)

5. to put the final motor hose in a box (G5)

Note that in this set-up, the operator chooses the

pace during the execution of his sub-tasks, and the

robot adapts to it.

4 Methodology for recognition of technical

gestures

In this section, we detail our end-to-end methodology

for online recognition of technical gestures in real-time.

In the first part 4.1, we present our pipeline (improved

and more general than our first versions already pre-

sented in (Coupeté et al, 2015) and (Coupeté et al,

2016b)) to recognize gestures, from extraction of fea-

tures to the classification algorithm. In part 4.2 we

describe the two criteria we use to evaluate our ges-

ture recognition system. In part 4.3, we explain how we

equipped the scene with an inertial sensor on a tool,

and how we refine output from gesture recognition by

taking into account the tool-movement information. Fi-

nally, in part 4.4, we propose an approach for adapting

to a new user our system, by limited enrichment of the

training database.

4.1 Gesture recognition pipeline

In order to capture the gestures of the operator, we

decided to use non-intrusive sensors, for avoiding any

discomfort to the operators. Moreover, we want to mon-

itor relative positions of the operator and the robot,

while capturing all the operator’s movement without

potential occlusions. For these reasons, we chose to use

a depth-camera, filming with a top-view for capturing
the scene without occlusion. Note that visits on real

assembly-lines, and preliminary work on another proto-

type use-case (door-elements mounting on a continuous

line) have convinced us that this choice of sensor type

and viewpoint configuration is transferable to most fu-

ture human-robot collaborative assembly areas. In this

section, we explain how we extract body-movement in-

formation from the depth-camera.

4.1.1 Posture estimation from depth images

A depth-camera provides information about 3D geom-

etry of the scene: the value of each pixel corresponds to

the distance between the camera and the filmed object

to which the pixel belongs.

In many related work on gesture recognition using

depth-cameras, input features are simply the successive

states of the global human skeleton posture estimation

provided by APIs of Kinect for horizontal viewpoint. In

our approach using a vertical viewpoint from the top, it

was not possible. We therefore needed to extract upper-

body (in particular hands) movements from the raw

depth-video. We make the assumption that, from top

viewpoint, the farthest upper-body parts from the top

of the head, using a geodesic measurement, are the two

hands. Based on this hypothesis, we have designed an

algorithm to locate the operators’ hands and estimate

arms’ postures in the depth-map.

Our algorithm, inspired but significantly modified

from (Schwarz et al, 2012) (in which Schwarz et al.

estimate global posture, but only for facing horizon-

tal viewpoint), is based on estimation of geodesics on

body 3D surface. First, we create a 2D graph of the

upper-body of the person filmed. Each pixel of this
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graph are connected with its eight neighbors. We as-

sociate for each connection a weight equal to the depth

difference between the two pixels, i.e. the difference of

the two pixels values. Then, we use Dijkstra algorithm

(Dijkstra, 1959) to compute the geodesic distance be-

tween each pixel of the upper-body and the top of the

head. We are thereby able to detect the two hands po-

sitions, and also obtain the geodesically shortest paths

between each hand and the top of the head’s (which

can be used as approximations of arms’ postures). Fig-

ure 3 illustrates this algorithm, and we refer readers to

(Coupeté et al, 2015) for further details on our algo-

rithm. One advantage of this approach for localization

of hands is that it is relatively immune to hand occlu-

sion: even when one hand is occasionally hidden from

the depth camera (e.g. by another arm), the forearm

and arm for this hand are generally still visible, so the

geodesic from the head is still properly found and just

stops around wrist instead of hand; therefore with this

method, hand occlusion leads to only slightly erroneous

hand position rather than to absence of information in

the data stream.

(a) (b)

(c)

Fig. 3 Our hands localization and upper-body posture esti-
mation algorithm. (a): depth-map from the camera filming an
operator with a top-view; (b): geodesic distance for each pixel
of the upper-body to the head’s top; (c): estimation of the
head and two hands locations, plus the geodesically-shortest
paths between hands and the head’s top (all produced by our
algorithm).

4.1.2 Choice of features

In most machine-learning and pattern-recognition tasks,

the attainable classification acuracy is strongly depend-

ing on the choice of features extracted from raw data

and fed into the algorithm. In gesture recognition, it is

rather natural and often adopted to use the estimated

movements of body parts and joints as features. How-

ever, not all of them are equally important, depending

on what gesture types should be recognized. Further-

more, it is well-known that inclusion of irrelevant fea-

tures can reduce recognition rate, either by just adding

“noise” to the machine-learning input, or worse by in-

troducing spurious correlations. It is therefore highly

recommended to either perform preliminary features se-

lection, or at least to compare recognition performances

attained with various sets of human-body related fea-

tures.

In our case, as exposed above, our dedicated depth-

image processing algorithm provides as output:

– 3D location of the head’s top;

– estimated 3D locations of the two hands;

– the two 3D geodesically-shortest paths from head

to each hand (providing rough approximations of

approximations of arms’ postures).

We therefore test (which we had not done in our

previous works) five different sets of features, listed in

Table 1 and illustrated on Figure 4. They all contain

3D locations of the two hands, completed with varying

number of other upper-body posture information.

Table 1 Definitions of the five sets of features compared.

featureSet 1
15 samples of each shortest path
+ head and two hands 3D locations

featureSet 2
7 samples of each shortest path
+ head and two hands 3D locations

featureSet 3
3 samples of each shortest path
+ head and two hands 3D locations

featureSet 4 head and two hands 3D locations

featureSet 5 two hands 3D locations

4.1.3 Gesture classification algorithm

To classify the technical gestures performed, we have

chosen to use discrete Hidden Markov Models (HMM).

They are probabilistic models for classification of se-

quential discrete data. Given a continuous-valued vec-

tor of features deduced from estimated top-viewed pos-

ture (see part 4.1.2), we first need to quantize these data
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Fig. 4 Illustration of our five sets of features tested and compared for recognition of technical gestures (see 4.1.2 for their
definition).

in order to obtain discrete-valued observations. For this

step, we use K-Means clustering. This method aims at

partitioning observations into a fixed number K of clus-

ters. Each observation belongs to the cluster with the

nearest centröıd. For our study, as already described

in (Coupeté et al, 2015) and (Coupeté et al, 2016b),

we partition all computed posture-estimation feature

vectors into K clusters, so each cluster corresponds to

an approximate top-viewed posture. After clustering, a

gesture is represented as a temporal sequence of clus-

ter IDs, corresponding to a sequence of approximate

postures.
We use these quantized data to train our discrete

HMMs, one HMM for each gesture class. For recogni-

tion, each feature vector extracted from depth-image

is quantized by the previously learned K-Means, and

the obtained labels are afterwards used as input for the

discrete HMMs to determine which gesture is currently

being performed. The recognized gesture is the one as-

sociated to the HMM which has the highest probability

to have generated the observations. To train our HMMs,

we use the Baum-Welch algorithm, and for the recog-

nition we use the Forward algorithm. They are both

implemented in the GRT1 open library. Figure 5 illus-

trates our methodology.

4.1.4 Online gesture recognition in real-time

We want to continuously recognize gestures in real-time

while the operator is working, performing the techni-

cal gestures one after the other naturally (i.e without

1 http://nickgillian.com/grt/

any pause between successive gestures). To this end,

we use a temporal sliding window of length T. Using

the Forward algorithm, we compute the likelihood for

each HMM to have produced the T last observations.

To filter out transient errors, we finally output as rec-

ognized gesture class the one which has been the most

recognized during the 10 last positions of the sliding

temporal window.

To evaluate the performance of our real-time recog-

nition system, we use the five standard metrics listed

below:

R =
#(gestures correctly recognized)

#(gestures performed)
(1)

Ri =
#(gestures i correctly recognized)

#(gestures i performed)
(2)

P =
#(gestures correctly recognized)

#(gestures classified)
(3)

Pi =
#(gestures i correctly recognized)

#(gestures classified i)
(4)

F = 2
P ×R

P +R
(5)

in which:

– #(gestures performed) represents the total number

of gestures of all classes performed by the operators

– #(gestures i performed) represents the number of

gestures of class i performed by the operators

– #(gestures correctly recognized) represents the num-

ber of gestures correctly recognized by our system.
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Fig. 5 Gesture recognition pipeline: input gesture (left) is a temporal sequence of feature vectors of same dimension F; each
continuous-valued feature vector is quantized by K-means into a discrete-valued “approximate posture” label (middle); the
obtained temporal sequence of successive posture labels is fed one after the other into G discrete HMM (1 per gesture class);
for each time-step, our system outputs the most probable current gesture class, by selecting the HMM which has current
maximum likelihood.

– #(gestures i correctly recognized) represents the num-

ber of gestures of class i correctly recognized

– #(gestures classified i) represents the number of ges-

tures classified with the label i.

– #(gestures classified) is equal to the sum of all the

value of #(gestes classified i) among all the classes

The average recall R provides a global information

on the capacity of our system to detect the gestures.

The values Ri detail the separate detection ability for

each class of gestures. The values Pi indicate the accu-

racy of our system when it outputs the corresponding

gesture class ID. The average precision P is the aver-

age of all precisions, Pi. Finally, the F-score F is the

harmonic mean of average precision and average recall,

and provides a global recognition performance index.

4.2 Evaluation criteria

To evaluate our system of gesture recognition, we use

two criteria. The first one, called jackknife, estimates

the future performance of our system for a new user,

from whom no gesture was used to learn K-Means and

train HMMs. Our second criterion, called 80%-20%, es-

timates performances of our system for users of whom

example gestures are included in the training set. These

two criteria are illustrated on Figure 6.

4.2.1 Jackknife

Our database contains recorded technical gesture ex-

amples from N operators. To evaluate our system for

Fig. 6 Illustration of our two evaluation criteria. Each color
represents an operator, and each dot a gesture example. (a):
Jackknife, (b): 80%-20%

an unknown user, we train it with a database composed

of gesture examples from N−1 operators, and estimate

recognition rate on gesture examples performed only by

the last operator (not included in training set). We test

all possible combinations of N−1 operators for training

and 1 operator for recognition estimation. This evalua-

tion criterion is illustrated on Figure 6(a).

4.2.2 80% - 20%

For this evaluation criterion, we randomly divide our

database in two parts. The first part is used for train-

ing and contains 80% of all gestures by all operators

in our database. The second part is used for testing

recognition, and is composed of the remaining 20% of

our database. This evaluation criterion is illustrated on

Figure 6(b). The main difference with the jackknife is

that with the 80%-20% criterion, the system uses exam-
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ples of gestures from the same operators in both train-

ing and testing databases, so it estimates recognition

performance for “known” operators, i.e. included in the

training set.

4.3 Use of inertial sensors placed on tools

To get more information on executed gestures, it can be

interesting to equip the scene with additional sensors.

In particular, valuable and complementary information

can be obtained by placing inertial sensors on the tools

that are used by the operator. Thus, as already reported

in our previous work (Coupeté et al, 2016b), we have

put an inertial sensor on the screwing-gun2 . We use

this additional data source with a “late-fusion” scheme:

output of vision-based HMMs are first computed, and

movement information from the tool is used only after-

wards to deduce the final gesture classification result.

We chose the “late-fusion” method because these data

will only be used to distinguish one particular gesture

class (“screwing”) against another one (“assembling”).

The screwing-gun is supposed to move only when

the worker is using it to screw together two parts of

motor hose. There is a conflict with the result of the

HMMs classification in two cases:

– case 1: when gesture G4 (“screwing”) is recognized,

while the screwing gun does not move

– case 2: when a gesture which is not G4 is recognized,

while the screwing gun did move

For the first case, if we suppose that the inertial sen-

sor cannot be broken, it is not possible to screw without

moving the screwing-gun. Therefore, if the likelihood of

the HMM for the gesture “to screw” is above a thresh-

old, we decide that this gesture has been executed, oth-

erwise no gesture is recognized (zero output).

For the second case, it is possible that the screwing-

gun moved without being used, if the worker wants to

move it from one side of the table to another for exam-

ple. In this case we also look at the output likelihood of

the HMM matching with the gesture “to screw”. If this

likelihood is above a threshold, we replace the gesture

previously recognized by “to screw”, otherwise we keep

the gesture associated to the HMM with the highest

likelihood.

With this method, we want to make our system

more robust by correcting confusion errors that can eas-

ily occur between rather similar gesture classes.

2 Note that in modern factories, many tools such as screw-
ing guns are actually connected to the assembly-line infor-
mation system, so that binary information such as “moving”
or “in use” can be readily available even without having to
place inertial sensors on them.

4.4 Adaptation to a new user

As already unveiled in (Coupeté et al, 2016a), we stud-

ied the adaptation to a new user of our system. For

this purpose, we experiment adaptation of the training

dataset to this new user. We think that it is quite feasi-

ble in practice, and worth considering, when an opera-

tor learns to perform a new human-robot collaborative

task, to record several repetitions of his gestures while

he is experimenting his new task. We could have tried

to apply an incremental learning algorithm: starting

from the HMMs pre-trained on other users and fine-

tune them with gesture examples from the new user.

However, because in our case HMM training is rather

fast, we decided to proceed by re-training from scratch

on training database enhanced by addition of some ges-

ture examples by the new user. As already reported in

our previous work (Coupeté et al, 2016a), we also in-

vestigate the impact on recognition performance of the

number of gesture examples from the new user added

to original multi-users database. Figure 7 illustrates our

methodology. Furthermore, in our final application, it

could be possible to switch between user-specific ges-

ture classifiers depending on the identity of current op-

erator. We therefore perform and present here a new

evaluation to compare with performance of classifiers

trained only on other gesture examples of the same new

user.

Fig. 7 Our method for adaptation to a new user: the initial
multi-users training set is complemented by a few gesture ex-
amples of the new user, and retrained “from scratch”. Evalu-
ation is performed only on independant gesture examples of
the same new user.

To evaluate this method, we add to the previous

database a growing number of sets of gesture examples

recorded from the new operator. One set is composed

of one gesture of each class.

As for the jackknife criterion, we test all possible

combinations of gesture examples from N − 1 opera-

tors + ε gesture examples of the last operator to create
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the training database, and remaining gestures examples

by the last operator to create the test database. Also,

to avoid potential bias due to varying size of training

set, we take care of maintaining a constant number of

gesture examples in our databases (training and test),

whatever the added number of new user gestures’ sets.

5 Experiments and results

In this section, we present our results. In a first part,

5.1, we explain how we recorded the gestures to cre-

ate our dataset of examples. In a second part, 5.2, we

present our study to choose optimal set of features de-

scribing technical gestures. Afterwards, we provide and

justify our choices of parameters (part 5.3), and then

present our online gesture recognition results (part 5.4).

Finally, we provide and analyze our gesture recognition

performances after adapting our system to a new user

by training set modification (part 5.5); those results

are also compared with performance attainable when

training our system with gestures from only the new

user (part 5.5.2).

5.1 Data acquisition protocol

To have a sufficiently large dataset for testing our method,

we recorded 13 “näıve” operators (among which 2 women

and 11 men) aged from 25 to 60 years old (47 years old

on average). Each operator has executed between 20

and 25 assembly tasks. For each assembly, between 7

and 8 successive gestures are performed by the opera-

tor. Note that operators did not have any prior knowl-
edge or experience on the task: they were only shown

how to assemble pieces together, and told that the robot

would handle pieces to them, but absolutely no instruc-

tion was given to them on detailed way to execute the

technical gestures; this implies that operators were ac-

tually performing the assembly task for the first time

during recording, thus increasing variability even be-

tween cycles executed by same operator.

5.2 Comparison of feature sets

As explained in 4.1.2, instead of using directly as fea-

tures all the body posture information that our depth-

image processing algorithm provides, we try and eval-

uate five different sets of features (see Table 1 for their

definitions and Figure 4 for their illustrations).

Table 2 shows the results obtained with these dif-

ferent sets of features, which is a new finding not in-

vestigated in our previous works. We can observe that

Table 2 Rates of correct gesture recognition obtained de-
pending on set of features. Recognition on isolated gestures,
jackknife criterion.
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65% 70% 72% 74% 79%

best result of correct gesture recognition, 79%, are ob-

tained when we use only the two hands 3D locations.

When we add information which are not directly linked

with the effective part of gestures, the recognition rates

decrease. Indeed, samples from the shortest paths and

head location provide information about the operator’s

posture, but they can vary significantly from one oper-

ator to another, and even between several executions of

the same gesture by the same user. Furthermore, this

finding is coherent with the results of (Chen et al, 2015)

in which very good recognition rates using only hand

movements as features are reported, for gestures of an

operator in a set-up similar to ours.

For the rest of presented results, we use as features

only the set of two hands 3D locations.

5.3 Gesture classification algorithm parameters

As described part 4.1.3, we use a combination of K-

Means and discrete HMMs to learn and recognize tech-

nical gestures. Both these algorithms have parameters

that we must determine: the number of clusters for K-

Means, and the number of hidden states for the HMMs.

We have tested different combinations of parameters

(which we had not reported in our previous publica-

tions) to determine and choose the values providing the

best results. These tests are conducted on isolated ges-

tures, i.e. gestures which are already segmented, and

using jackknife criterion. Results are presented in Ta-

ble 3.

We can observe that, when the number K of K-

means clusters increases, the rate of correct gesture

recognition gets clearly better, until K reaches 20 or 25.

This was somewhat expected because more clusters im-

plies a finer discretized description of hands postures,

allowing a better distinction between different classes

of gestures; and conversely when quantization is suf-

ficiently fine, further increase of K cannot bring more

improvement. As highlighted in Table 3, the recognition

rate reaches a maximum of 82% of correct recognitions
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Table 3 Correct gesture recognition rates as a function of
number K of K-means clusters, and number S of HMM states.

Number S of HMM states
5 7 10 12 15 20

N
u
m
b
e
r
K

o
f

K
-m

e
a
n
s
c
lu

st
e
r
s 10 74% 75% 73% 72% 74% 73%

15 76% 78% 78% 79% 78% 79%

20 77% 80% 77% 78% 79% 78%

25 76% 77% 79% 82% 81% 80%

30 77% 78% 78% 80% 80% 79%

for K = 25 clusters and using HMMs with S = 12 hid-

den states. For the rest of this study, we use 25 clusters

for K-means and 12 hidden states for HMMs as param-

eters of our gesture classification algorithm.

5.4 Online recognition perfomances

We need to recognize gestures while they are performed

by the operator, and ideally even before they are fin-

ished.

Figure 8 illustrates two examples of output by our

online continuous gesture recognition, each one during a

complete assembly task executed by an operator. The

blue line and the colors on the background represent

the ground truth, i.e. the gestures which are currently

performed by the operator. The red line represents the

real-time output of our system.

On top of Figure 8, during the execution of the first

gesture 1 “take a motor hose part in the robot right

claw”, from 0 to 2 seconds, our system is still recogniz-

ing the previous gesture 5, “to put the assembled piece

in the box”, but finally recognizes gesture 1 roughly 0.5

seconds before the end of its execution. All the following

gestures are correctly recognized before they end (most

of the time between 0.5 and 2 seconds in advance). Dur-

ing this assembly, our system wrongly recognizes ges-

ture 3, “to join two parts of the motor hose”. During

this time the operator has his two hands in front of him,

while waiting for the robot to bring him the next motor

piece. This posture is similar to the one observed dur-

ing execution of gesture 3, this is why we can observe

this mistake.

On bottom of Figure 8, one can also observe that

our system correctly recognizes technical gestures per-

formed by the operator. In this case, it can be noticed

that our system sometimes outputs zero instead of a

gesture class ID. This occurs when current gesture is

not well-enough recognized, and our system returns a

zero value, rather than risking to output a false recog-

nition.

In the two next sections, we present our results of

online gesture recognition evaluated with our two cri-

teria, jackknife and 80%-20%.

5.4.1 Jackknife

We first evaluate with jackknife criterion the result of

our system continuously recognizing gestures in real-

time. The performances, depending on duration of the

temporal sliding window, are presented in Table 4 for

recall rates and in Table 5 for precision rates.

For recall, best results are obtained with medium

duration of temporal sliding windows: 1 second and 1.5

seconds. For both window lengthes, we have a R score

of 77%. With the window duration of 0.5 second the R

score is lower, 65%. This window is not long enough to

contain sufficient information to correctly recognize the

technical gestures. For the longest sliding window, 2 sec-

onds, we obtain a R score of 74%. With this duration,

short gestures can be drowned with other information,

inhibiting their correct recognition.

Table 4 Recall for online continuous recognition of technical
gestures using data from the depth-camera and from inertial
sensor on the screwing-gun. Evaluation criterion: jackknife,
number of states: 12, number of clusters: 25

Length of Recall

temporal R R1 R2 R3 R4 R5

sliding
window

0.5 s 65% 54% 62% 38% 94% 83%
1 s 77% 68% 79% 60% 95% 87%
1.5 s 77% 67% 75% 64% 95% 84%
2 s 74% 65% 64% 64% 95% 82%

We observe for precision a trend similar to the one

obtained for recall. Better results are obtained with

longer temporal sliding windows, and the best one is

obtained with a window duration of 1 second, reaching

a P score of 84%.

Table 5 Precision for online continuous recognition of tech-
nical gestures using data from the depth-camera and from in-
ertial sensor on the screwing-gun. Evaluation criterion: jack-
knife, number of states: 12, number of clusters: 25

Length of Precision

temporal P P1 P2 P3 P4 P5

sliding
window

0.5 s 79% 57% 81% 71% 92% 80%
1 s 84% 68% 87% 79% 92% 86%
1.5 s 83% 67% 87% 76% 92% 84%
2 s 83% 53% 76% 77% 98% 90%
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Fig. 8 Examples of online continuous gesture recognition. Blue line and colors on the background: ground truth, Red line:
our system output. Note that, in order to avoid false recognitions, our system sometimes ouputs ’0’ (as can be seen on second
example) instead of a gesture class when it is unsure about the type of currently executed gesture.

5.4.2 80% - 20%

We also evaluate our system using the 80%-20% crite-

rion. The results are presented in Tables 6 and 7 for

recall and precision respectively.

These results follow a trend similar to that observed

with jackknife criterion. The best results of recall are

obtained for medium-sized temporal sliding windows,

with a duration of 1 second and 1.5 seconds. For these

windows, we reach a recall of 85% and a precision of

82%. As expected, we can observe that recall is higher

when using the 80%-20% criterion than with jackknife.

Indeed, with the 80%-20% criterion, the system already

“knows” the operator, i.e. some of his gesture examples

were used to train the HMMs. These results motivated

us to explore a method to adapt our system to a new

user by modifying the training set.

5.4.3 Recognition delays

As can be seen on Figure 8 by comparing change in-

stants of blue and red lines, our algorithm performs

early recognition of gestures, in the sense that the op-

erator’s action is often correctly classified BEFORE the

gesture is finished, and even sometimes a rather short

time after it is initiated. We also have quantitatively

Table 6 Recall for online continuous recognition of technical
gestures using data from the depth-camera and from inertial
sensor on the screwing-gun. Evaluation criterion: 80%-20%,
number of states: 12, number of clusters: 25

Length of Recall

temporal R R1 R2 R3 R4 R5

sliding
window

0.5 s 80% 38% 85% 76% 95% 77%
1 s 85% 44% 87% 87% 96% 80%
1.5 s 85% 55% 86% 80% 95% 86%
2 s 81% 64% 88% 80% 95% 81%

Table 7 Precision for online continuous recognition of tech-
nical gestures using data from the depth-camera and from in-
ertial sensor on the screwing-gun. Evaluation criterion: 80%-
20%, number of states: 12, number of clusters: 25

Length of Precision

temporal P P1 P2 P3 P4 P5

sliding
window

0.5 s 74% 68% 95% 55% 92% 89%
1 s 80% 70% 94% 75% 92% 89%
1.5 s 82% 70% 91% 77% 92% 89%
2 s 73% 67% 77% 76% 92% 89%
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evaluated these delays between initiation of an action

and the instant when it is correctly recognized by our

system. As shown in Table 8, this delay is typically be-

tween 1 and 1.5 seconds, to be compared with gestures

durations which vary between 1.5 s and 3 s; it is in-

teresting to note that for gesture classes G3 and G4,

recognition occurs on average respectively 0.9 s and 0.6

s before the end of the gesture.

Table 8 Time delay between gesture initiation and its recog-
nition (averages and standard deviations, in seconds), com-
pared to gesture average duration (in seconds)

Gesture mean mean
class gesture recognition St.Dev.

duration delay

G1 1 s 1.1 s 0.4 s
G2 1.1 s 1.3 s 0.6 s
G3 2.5 s 1.6 s 1.2 s
G4 2 s 1.4 s 0.6 s
G5 1.7 s 1.6 s 0.6 s

5.4.4 Comparison with Dynamic Time Warping

(DTW)

In order to assess if our particular recognition method

(K-means+discrete-HMMs) has an important contribu-

tion to our final results, we have also conducted tests

using DTW (Dynamic Time Warping) instead. As men-

tioned in section 2.2.3, DTW is a very commonly used

technique for gesture recognition, so it provides a useful

baseline result. As can be seen in Table 9 the recogni-

tion performance is much lower with DTW than with
K-means+HMMs. This can be explained by the quite

large intra-class variability of gesture execution in our

application, because DTW models each gesture class

by one single template, which makes it less suitable for

our technical gestures. This hypothesis is confirmed by

the fact that the drop of recognition rate for a new user

(Jackknife criteria) compared to a “known” user (80%-

20% criteria) is much higher with DTW (−10%) than

with K-means+discrete-HMMs (−3%), which means our

recognition method is clearly more robust to gestural

variability.

5.5 Adaptation of gesture recognition to a new user

5.5.1 Adaptation of training dataset

We can observe on results presented above that our

rates of correct gesture recognition are better when the

system “knows” the user, i.e. was trained with a dataset

Table 9 Comparison of gesture recognition performance be-
tween DTW and K-means+discrete-HMMs): average F-score,
average Precision and average Recall

Algo (evaluation criteria) F P R

DTW (Jacknife) 39% 47% 34%
DTW (80%-20%) 50% 59% 44%

K-means+HMMs (Jacknife) 80% 83% 77%
K-means+HMMs (80%-20%) 83% 82% 85%

containing at least some gesture examples performed by

him. Indeed, we obtain better results with the 80%-20%

criterion than with jackknife. This observation moti-

vated us to adapt the training database to a new user,

as explained in part 4.4.

Our approach consists in adding one or several sets

of gesture examples executed by the new operator to

the training database. For the comparison to be fair,

we randomly remove gestures from the original multi-

operators dataset when we add gestures by the new

operator, in order to maintain the same size of training

and testing datasets for all tests.

The results (using a 1 second long temporal sliding

window) are compared on Table 10. Both recall and

precision increase to reach 89%, when 15 sets of gesture

examples have been added. Table data are plotted on

top-left of Figure 9, showing recall precision and F-score

as a function of the number of sets added in the training

base.

Table 10 Precision and recall of technical gestures for online
recognition, after an adaption of the training base with an
increasing added number of gesture examples from the new
user. Data from the depth-camera and inertial sensor on the
screwing-gun.

Number of sets of gesture added
1 2 3 4 5 7 10 12 15

P (%) 84 84 86 85 86 85 86 86 89

R (%) 84 84 87 87 86 87 88 88 89
F (%) 84 84 86 86 86 88 86 87 89

The maximum improvement is quite large (+12%

of recall and +5% of precision, compared to the initial

jackknife results in Tables 4 and 5). Interestingly, it

appears that even when adding only a small number

(≤ 5) of gesture sets, the improvement is significant

(+9% recall and +3% precision). It can also be seen

on curves plotted on top-right of Figure 9 that the first

5 added sets bring significantly more improvement by

set. The recall and precision continue to increase when

more gesture sets are added, but the impact of each set
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Fig. 9 Adaptation of gesture recognition to new user. On top, results obtained by training on multi-users database enriched
by addition of some gesture examples from a new user (left: recall, precision and F-score as a function of the number of gesture
sets added; right: improvement contribution brought by each new added set). On bottom, comparison of recall (on left) and
precision (on right) between the performances attained by adding gestures example sets by new user to multi-users training
database (red lines), and the result of training with gesture examples ONLY by the new user (blue lines).

decreases and converges around 1% of improvement for

each new set added.

These observations show that adding to the training

dataset a relatively small number of gesture examples

from a new user can, after full retraining, significantly

improves gesture recognition performances for this new

user. Using operator-specific personalized gesture clas-

sifiers is therefore desirable, and easily feasible by re-

training from scratch after very slight augmentation of

an initial multi-users training database.

5.5.2 Comparison with training on mono-user datasets

Since we test a system adapted to a new user by modi-

fying the training base, one can wonder what would be

the performances of a system trained on gesture exam-

ples recorded only from this new user. We therefore also

evaluate gesture recognition results, in case our system

is trained and tested on databases composed only of

gesture examples from the same operator. We conduct

this evaluation, which is a new study compared to our

previous work, for an increasing number of gestures in

training set, the size of the test database being constant.

Results are shown in Table 11. Not surprinsingly, recog-

nition performances strongly increase when the number

of gesture sets grows, particularly from 1 set (F-score =

80%) to 7 sets (F-score = 89%). Improvement is much

slower for further addition of gesture sets.

Table 11 Precision, recall and F-score of technical ges-
tures online recognition with mono-user training and testing
databases. Data from the depth-camera and inertial sensor
on the screwing-gun.

Number of gestures sets in training
1 2 3 4 5 7 10 12 15

P (%) 86 85 87 88 87 88 88 86 88

R (%) 75 87 87 88 88 91 89 88 89
F (%) 80 86 87 88 88 89 89 87 88

Plots on bottom of Figure 9 compare recognition

performances attained by using mono-user training data-

set with those presented in 5.5.1, where a multi-users

training database was enriched with a few gesture ex-

amples by the test user. For recall (graph on the bottom-

left), results of the mono-user-trained system are glob-
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ally better than those obtained from the multi-users

adapted system; however recall rates become quite sim-

ilar for higher number of gesture sets. For precision

(bottom-right graph), results for the mono-user system

and the multi-user adapted system are globally very

close. However, above ten sets, the precision from the

system based on a multi-users adapted training base are

better than those obtained with the mono-user system.

These results of precision and recall suggest that a

multi-users adapted system can be more robust than a

mono-user system, which is a new finding. This could be

explained by the fact that a multi-user adapted train-

ing set contains a greater quantity of ways to perform

the same gesture than a same-size mono-user database.

Hence the learnt HMMs are more general, allowing a

better precision during recognition.

6 Conclusions and perspectives

In this study, we presented an experiment on a real pro-

totype in which we continuously recognize, online and

in real-time, technical gestures performed by operators

on an assembly-line. This study highlights the feasibil-

ity to recognize technical gestures in such context using

only non-intrusing sensors.

We use a depth-camera with a top-view to minimize

possible occlusions on the collaborative task. We choose

the gesture classes to be recognized so as to optimize

coordination between the robot and operator.

We propose an algorithm for estimating upper-body

posture (especially hands positions) using geodesic dis-

tances between upper-body pixels and the head’s top.

We highlight that features directly linked to the effec-

tive part of gestures (hands movements) lead to better

recognition results than using user’s upper-body global

posture.

We show that our system can recognize technical

gestures in real-time, even for users not included in

training database examples. We also propose a method

to adapt gesture classification to a new user, by mod-

erate enrichment of the training set. We reach 91% re-

call and 88% precision during online multi-users gesture

recognition.

Furthermore, we highlight that training on a dataset

adapted to a new user by addition of rather few gesture

examples can lead to better precision of gesture recog-

nition than learning a totally user-specific classifier for

each operator, trained with only his own example ges-

tures. This could be due to the fact that a multi-users

database includes more variability of gestures’ execu-

tion, leading to more robustness.

As for perspectives, we currently work on handling

parasite gestures, which can be performed by operators

while they are working, but are not technical gestures.

We also plan to investigate use of different lengthes of

temporal sliding windows for each gesture class, to take

into account their unequal average durations. It could

also be interesting in a future work to analyze if there

could be a relation between situation of actual hands

positions 6D vector within clusters along the gesture

trajectory, and success or failure of the gesture recog-

nition by the HMMs.

Finally, since our gesture recognition methodology

(choice of feature set, classification pipeline, adaptation

to new user) is rather general, it could be used in ap-

plication contexts other than manufacturing assembly-

lines, for example in assistance and service collaborative

robotics.
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