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Abstract. The Intangible Cultural Heritage (ICH) implies gestural knowledge 
and  skills  in  performing  arts,  such  as  music,  and  its  preservation  and 
transmission  is  a  worldwide  challenge  according  to  UNESCO.  This  paper 
presents an ongoing research that aims at the development of a computer vision 
methodology  for  the  recognition  of  music-like  complex  hand  and  finger 
gestures  performed  in  space.  This  methodology  can  contribute  both  to  the 
analysis  of  classical  music  playing  schools,  such  as  the  European  and  the 
Russian,  and  to  the  finger  gesture  control  of  sound  as  a  new interface  for  
musical expression. An implementation of a generic method for building body 
subpart classification model applied in musical gestures is presented.  A robust 
classification model from a reduced training dataset, as well  as a method for 
spatial  aggregation  of the classification results,  which  provides a confidence 
measure  on  each  hand  subpart  location  is  developed.  A  80%  pixel-wise 
classification accuracy and 95% ponctual subpart location accuracy is achieved 
when musical finger gestures with a semi-closed hand are performed in front of 
the camera and the rotation around camera axis is not too important.
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1   Introduction

Hand and finger  gestures  have  always  played  an important  role in  human artistic 
expression.  The human know-how behind this expression constitutes  the ICH that 
should  be  preserved  and  transmitted  with  the  contribution  of  the  “i-Treasures” 
research project.  According to the objectives  of  “i-Treasures”  a  novel Multimodal 
Human-Machine  Interface  for  the  artistic  expression  and  more  precisely  for  the 
contemporary music composition should be developed, where natural hand and finger 
gestures performed should be mapped in real time to sounds. There are significant 
challenges to address but the first obvious one is to precisely capture and recognize  
finger gestures. This has been at the heart of many previous researches though often 
the literature focuses on the most trivial cases where the hand is waved in the air in 
front of the camera in the open-palm position. In this article we show that an existing 
model may be applied to more complex hand poses implying a possible use for our 
future  music-like  finger  gesture  recognition.  This  study  and  the  model  produced 
should contribute to the analysis and identification of the characteristics of different 
pianistic schools (Russian and European) applied in music playing.



2  State of the Art

Recent  research  tendencies  show  an  increasing  interest  in  identification  and 
recognition of gestures with the use of different type of motion capture technologies: 
Wireless motion sensor-based, Marker-based, and marker-less technologies.

Various types of wireless motion sensors [4][5][6] or commercial interfaces, such 
as the Wii joystick [7], or the IGS-190 inertial motion capture suits from Animazoo,  
can provide real-time access to motion information. Usually,  they are used for the 
recognition of gestures performed in space or on tangible objects and the provide a 
rotation representation of the motion.

Marker-based  systems  are  based  on  optical-markers  technology,  such  as  Vicon 
Peak or Optitrack. In [1][2] for instance, the Vicon system was used to capture the 
motion  of  violin  players.  The  aim  of  this  research  was  the  modelling  of  music 
performances  by  understanding  different  bowing  strategies  in  violin  playing.  In 
another case, researchers tried to adapt this method on piano players [3], which has 
contributed to an off-line analysis. 

Marker-less systems do not require subjects to wear special equipment for tracking 
and are usually based on passive computer vision approaches. In [8], recognition of 
the musical effect of the guitarist’s finger motions on discrete time events is proposed, 
using  static  finger  gesture  recognition  based  on  the  “EyesWeb”  computer  vision 
webplatform. This approach  cannot  easily be applied in  live performances.  In  the 
iMuse project [9], motion of the pianist’s hands is used to “follow the music score”,  
which  means  to  synchronize  his  performance  to  the  music  score.  A camera  was 
mounted  above  the  piano  keys,  however,  the  hand  of  the  musician  is  globally 
analyzed, not in a finger level, and consequently finger gestures are not recognized.  
Another  methodology  for  complex  finger  musical  gesture  recognition  has  been 
implemented  in  the  PianOrasis  system,  which  is  based  on  marker-less  computer 
vision image analysis techniques to detect and identify the fingertips and the centroid 
of the hand on a RGB video [10].

As an extension of [10], we present in this short article a hand classification model 
that  permits  the  recognition/location  of  different  hand  subparts  while  executing 
music-like finger gestures with the use of a single time-of-flight depth camera (PMD 
CamBoard Nano).

3  Hand Skeletal Model

3.1   Overview

Several methods exist to retrieve body or hand subparts position either from RGB or 
from depth maps. The commonly used framework is to fit a skeleton model so that it  
matches observable features and to apply inverse kinematics to refine the skeleton 
[14-15].  A  major  reference  in  this  field  is  the  Kinect  body  retrieval  algorithm 
described by Shotton et al. [11] where Random Decision Forests (RDF) are trained to 
perform pixel-wise body classification. This approach has been proven robust though 
initially restricted to entire body gesture due to sensor limitations. Lately, Keskin et 
al. [12] investigated the same approach this time on the hand skeleton and exhibit  
very promising performance.  Still,  the experimentation was  limited  to  a  proof-of-



concept that recognizes American Sign Language digits. Such application is far from 
our use case since the hand is usually facing the camera in the classical open-palm 
position and the simultaneous finger gesture recognition has not been evaluated. 

Though also derivated from Shotton et al. [11], our development investigates the 
complex use case where the hand is executing music-like finger gestures that are of 
higher order of complexity. At first, we built a three-levels hand model with 12 labels 
that encompasses the hand base (palm and wrist) as well as fingers and fingertips as  
depicted in Fig. 1. We believe that this model is complex enough to analyse fine hand 
configurations and at the same time simpler than the 19 labels model used in [12],  
thus  providing  less  classification  errors.  Fig  1.  shows  pixel-wise  classification 
obtained using the discussed method.

Fig.1. Hand model used with 12 subparts, depth maps, corresponding ground-truth and pixel-
wise classification.

3.2   Training with Random Decision Forests (RDF)

As suggested in [11-12], we train Random Decision Forests (RDF) so as to perform 
pixel-wise classification. RDF [15] is an improvement of the Decision Trees machine 
learning approach where a complex problem is split in simple decisions to take that 
are often depicted as the nodes of a tree (the leaves being the final decision).  For each 
tree of an RDF a subset of pixels x from images of the training database are used to 
train the tree. To limit the processing and memory cost, we use up to 3 decision trees 
with a maximal depth of 20. Then, for each node, we randomly generate 2000 weak 
classifiers and for each of these 50 candidate thresholds. The weak classifier we use 
(i.e. feature) compares the depth offsets in a specific neighbour and is similar to [11] 
as it was proved to be accurate and fast enough. Feature at pixel x of depth image I is 
thus computed as a difference of depth levels for offsets  u  and v normalised w.r.t. 
depth at x, as it is presented in equation 1.
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We then simulate data partition at  this node by thresholding this feature  response 
using each candidate threshold and compute the entropy subsequent to the partition of 



the dataset. Finally, we keep the combination of feature and threshold that maximizes 
the information gain, which denotes the difference between current node information 
entropy and the sum of entropy of the sub trees resulting from the data partition. Data 
partition and weak classifier selection are then computed recursively on the left and 
right  subtrees  in  a  prefix  order,  until  either  maximum  depth  is  reached  or  the 
information gain goes under a fixed threshold. We eventually store in tree leaves the 
probability distributions of the different hand subparts. Those distributions can be re-
computed afterwards using all the images from the training database which, according 
to [12], allows slightly higher recognition rates.

In  our  case,  this  training  stage  is  performed  upon  500  hand-labelled  images 
recorded with our depth camera. This database gathers input from 5 different persons 
simulating music-like hand and finger gestures  in front of the camera such as the 
“arpeggio”gesture, as depicted in Fig.2.

Fig. 2. An “arpeggio” score and piano-like gesture simulation (depth map and ground-truth)

We note that, if  [11] and [12] suggests the use of hundreds thousands images for 
the establishment of a skeletal model relative to a broad spectrum of distinct body or 
hand postures,  we believe that,  in our restricted  subcase,  it  is  possible to achieve 
satisfying classification results with a reduced sample.

3.3   Pixel-wise classification

For  each  pixel  of  an  input  depth  image,  the  trained  decision  trees  independently 
outputs a probability distribution that is relative to the hand subpart assignment. These 
distributions are then averaged over every tree among the decision forests and form 
the final pixel probability to belong to each subpart of the model. 

Now, from each subpart probability map we estimate the subpart position using the 
Mean Shift algorithm [13] which has the advantage of converging very quickly. It also 
allows us to filter the noise on the classification measurement on a pixel level with the 
thresholding of the probabilies before computing the density estimator.

3.4   Performance

To measure the performance of our proposed method we have compared the output of 
our  pixel-wise  classification  with  125  images  (165x120pixels)  that  we  have 
previously hand-labelled. In contradiction to [11] and [12] we did not use synthesis 



images as it is not feasible to reproduce the exact expert gesture. Hence, the hand-
labelling may be subject  to some variation if the same process  was accomplished 
several times.

Fig.  3.a shows this performance for each of our model subpart with an average 
classification rate of 80%.  Hand subparts performance corresponding to wrist, little 
finger, ring, middle, index as well as thumb tip is above the average accuracy, which 
lies slightly above 80%. However,  other hand subparts such as thumb or palm are 
more likely to be occluded by other fingers in the hand configurations we studied. 
Noteworthy, the fingertips exhibit a lower classification (60-80%) rate which could be 
explained by the fact that their imaged size is smaller thus implying fewer training 
data (especially, as only pixels are randomly sampled in the training process). Such 
assumption could be verified by re-training our model with more images.

Fig. 3. Performance of our model. (a) Pixel classification rate. (b) Average pixel distance from 
the joint centroids estimated to the joint centroids ground-truth.

Additionally,  to  measure  the  precision  of  our  joint  estimation we  compare  the 
average  distance  of  the joint  retrieved  from the Mean Shift  algorithm against  our  
ground-truth data. From our 125 test images, the performance reported in Fig. 3.b. 
shows that all joints position is less than 3 pixels from our ground-truth except the 
palm joint which is less accurate. Again, this is explained by the fact that the palm is  
often imaged in several pieces due to finger occlusions making the accurate centroid 
estimation much more complex.

So far, the performance seems sufficient to be used in a finger gesture recognition 
pipeline.  However,  to  allow fine  pose  recognition  we  lack  information  about  the 
confidence  in  the  hand  subpart  position  estimation.  One  solution  we  did  not 
implement yet would be to compare the zeroth moment score with the output from the 
mean shift iterations, as it would provide an interesting measure of how important the 
retrieved local maxima of the probability distribution is.

4   Conclusion and perspectives

This  paper  presented  an  implementation  of  a  generic  method  for  building  body 
subpart classification model applied to musical finger gestures for the preservation of 
the ICH.  This methodology can contribute both to  the analysis  of  classical  music 
playing schools but also to the finger gesture control of sound as a new interface for 
musical expression. 80% pixel-wise classification accuracy and 95% ponctual subpart 
location accuracy are achieved when musical finger gestures with a semi-closed hand 
are performed in front of the camera. As a next step in the near future, it is planned to 



perform data  fusion  of  two depth  cameras  in  order  to  achieve  better  results  and 
address the problem of scene and self-occlusions.
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