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Abstract

In this paper, we study a convolutional neural network we
recently introduced in [9], intended to recognize 3D hand
gestures via multivariate time series classification.

The Convolutional Neural Network (CNN) we propo-
sed processes sequences of hand-skeletal joints’ positions
using parallel convolutions. We justify the model’s ar-
chitecture and investigate its performance on hand ges-
ture sequence classification tasks. Our model only uses
hand-skeletal data and no depth image. Experimental re-
sults show that our approach achieves a state-of-the-art
performance on a challenging dataset (DHG dataset from
the SHREC 2017 3D Shape Retrieval Contest).Our model
achieves a 91.28% classification accuracy for the 14 ges-
ture classes case and an 84.35% classification accuracy for
the 28 gesture classes case.

1 Introduction

Gesture is a natural way for a user to interact with one’s
environment. One preferred way to infer the intent of a
gesture is to use a taxonomy of gestures and to classify
the unknown gesture into one of the existing categories ba-
sed on the gesture data, e.g. using a neural network to per-
form the classification. In this paper we present and study a
convolutional neural network architecture relying on intra-
and inter- parallel processing of sequences of hand-skeletal
joints’ positions to classify complete hand gestures. Where
most existing deep learning approaches to gesture recog-
nition use RGB-D image sequences to classify gestures
[41], our neural network only uses hand (3D) skeletal data
sequences which are quicker to process than image se-
quences. The rest of this paper is structured as follows. We
first review common recognition methods in Section II. We
then present the DHG dataset we used to evaluate our net-
work in Section III. We detail our approach in Section IV in
terms of motivations, architecture and results. Finally, we
conclude in Section VI and discuss how our model can be
improved and integrated into a realtime interactive system.
Note that the contents of this paper are highly similar to
that of [9], especially sections 1, 2 and 3, as well as the fi-
gure illustrating the network, however in this article we fo-

cus more on practical tips and on justifying the network ar-
chitecture whereas the original paper focus was more cen-
tered on gesture-related aspects. Readers familiar with [9]
can directly skip to the subsection Architecture Tuning of
section IV, in which the network architecture is justified
more thoroughly.

2 Definition & Related Work

We define a 3D skeletal data sequence s as a vector s =
(p1---pn)T whose components p; are multivariate time se-
quences. Each component p; = (p;(t)),. represents a mul-
tivariate sequence with three (univariate sequences) com-
ponents p; = (x<i), y<i),z(i)) that alltogether represent a time
sequence of the positions p;(¢) of the i-th skeletal joint j;.
Every skeletal joint j; represents a distinct and precise arti-
culation or part of one’s hand in the physical world.

In the following subsections, we present a short review
of some approaches to gesture recognition. Typical ap-
proaches to hand gesture recognition begin with the ex-
traction of spatial and temporal features from raw data.
The features are later classified by a Machine Learning
algorithm. The feature extraction step can either be ex-
plicit, using hand-crafted features known to be useful for
classification, or implicit, using (machine) learned features
that describe the data without requiring human labor or ex-
pert knowledge. Deep Learning algorithms leverage such
learned features to obtain hierarchical representations (fea-
tures) that often describe the data better than hand-crafted
features. As we work on skeletal data only, with a deep-
learning perspective, this review pays limited attention to
non deep-learning based approaches and to depth-based
approaches ; a survey on the former approaches can be
found in [19] while several recent surveys on the latter ap-
proaches are listed in Neverova’s thesis [21].

2.1 Non-deep-learning methods using hand-
crafted features

Various hand-crafted representations of skeletal data can
be used for classification. These representations often des-
cribe physical attributes and constraints, or easily interpre-
table properties and correlations of the data, with an em-



phasis on geometric features and statistical features. Some
commonly used features are the positions of the skele-
tal joints, the orientation of the joints, the distance bet-
ween joints, the angles between joints, the curvature of the
joints’ trajectories, the presence of symmetries in the ske-
letal, and more generally other features that involve a hu-
man interpretable metric calculated from the skeletal data
[15, 16, 33]. For instance, in [37], Vemulapalli et al. pro-
pose a human skeletal representation within the Lie group
SE(3) x ... x SE(3), based on the idea that rigid body ro-
tations and translations in 3D space are members of the
Special Euclidean group SE(3). Human actions are then
viewed as curves in this manifold. Recognition (classifica-
tion) is finally performed in the corresponding Lie algebra.
In [8], Devanne ef al. represent skeletal joints’ sequences
as trajectories in a n-dimensional space; the trajectories
of the joints are then interpreted in a Riemannian mani-
fold. Similarities between the shape of trajectories in this
shape space are then calculated with k-Nearest Neighbor
(k-NN) to achieve the sequence classification. In [7], two
approaches for gesture recognition -on the DHG dataset
presented in the next section- are presented. The first one,
proposed by Guerry et al., is a deep-learning method pre-
sented in the next subsection. The second one, proposed by
De Smedt et al., uses three hand-crafted descriptors : Shape
of Connected Joints (SoCJ), Histogram of Hand Directions
(HoHD) and Histogram of Wrist Rotations (HoWR), as
well as Fisher Vectors (FV) for the final representation.
Regardless of the features used, hand-crafted features are
always fed into a classifier to perform the gesture recog-
nition. In [5], CIPPITELLI et al. use a multi-class Sup-
port Vector Machine (SVM) for the final classification
of activity features based on posture features. Other very
frequently used classifiers [40] are Hidden Markov mo-
dels (HMM), Conditional Random Fields (CRF), discrete
distance-based methods, Naive Bayes, and even simple -
Nearest Neighbors (k-NN) with Dynamic Time Warping
(DTW) discrepancy.

2.2 Deep-Learning based methods

Deep Learning, also known as Hierarchical Learning, is a
subclass of Machine Learning where algorithms f use a
cascade of non-linear computational units f; (layers), e.g.
using convolutions, for feature extraction and transforma-
tion: f = fiofyo...0f,.A traditional Convolutional Neu-
ral Network (CNN, or ConvNet) model almost always in-
volves a sequence of convolution and pooling layers, that
are followed by dense layers. Convolution and pooling
layers serve as feature extractors, whereas the dense layers,
also called Multi Layer Perceptron (MLP), can be seen
as a classifier. A strategy to mix deep-learning algorithms
and (hand) gesture recognition consists in training convo-
lutional neural networks [18] on RGB-D images. A di-
rect example of hand gesture recognition via image CNNs
can be found in the works of Strezoski et al. [32] where
CNN s are simply applied on the RGB images of sequences
to classify. Guerry et al. [7] propose a deep-learning ap-

proach for hand gesture recognition on the DHG dataset,
which is described in section III of this paper. The Guerry
et al. approach consists in concatenating the Red, Green,
Blue and Depth channels of each RGB-D image. An al-
ready pretrained VGG [29] image classification model is
then applied on sequences of 5 concatenated images conse-
cutive in time. In [20], Molchanov et al. introduce a CNN
architecture for RGB-D images where the classifier is made
of two CNN networks (a high-resolution network and a
low-resolution network) whose class-membership outputs
are fused with an element-wise multiplication. Neverova et
al. carry out a gesture classification task on multi-modal
data (RGB-D images, audio streams and skeletal data) in
[22, 23]. Each modality is processed independently with
convolution layers at first, and then merged. To avoid mea-
ningless co-adaptation of modalities a multi-modal dropout
(ModDrop) is introduced. Nevertheless, these approaches
use depth information where we only want to use ske-
letal data. In [38], Wang et al. color-code the joints of
a 3D skeleton across time. The colored (3D) trajectories
are projected on 2D planes in order to obtain images that
serve as inputs of CNNs. Each CNN emits a gesture class-
membership probability. Finally, a class score (probability)
is obtained by the fusion of the CNNs scores.

Recurrent Neural Networks (RNN), e.g. networks that use
Long Short-Term Memory (LSTM) [12] or Gated Recur-
rent Units (GRU) [4], have long been considered as the
best way to achieve state-of-the-art results when working
with neural networks on sequences like time series. Re-
cently, the emergence of new neural networks architectures
that use convolutions or attention mechanisms [35, 36] ra-
ther than recurrent cells has challenged this assumption,
given that RNNs present some significant issues such as
being sensitive to the first examples seen, having complex
dynamics that can lead to chaotic behavior [17] or being
models that are intrinsically sequential, which means that
their internal state computations are difficult to parallelize,
to name only a few of their issues. In [30], Song ef al. ele-
gantly combine the use of an LSTM-based neural network
for human action recognition from skeleton data with a
spatio-temporal attention mechanism. While this approach
seems promising, we rather seek to find a convolution-only
architecture rather than a recurrent one.

Zheng et al. propose a convolution-based architecture that
does not involve recurrent cells in [42], although this ar-
chitecture can easily be extended with recurrent cells :
[25]. Zheng et al. introduce a general framework (Multi-
Channels Deep Convolution Neural Networks, or MC-
DCNN) for multivariate sequences classification. In MC-
DCNN, multivariate time series are seen as multiple univa-
riate time series ; as such, the neural network input consist
of several 1D time series sequences. The feature learning
step is executed on every univariate sequence individually.
The respective learned features are later concatenated and
merged using a classic MLP placed at the end of the fea-
ture extraction layers to perform classification. The major



difference between MC-DCNN and other deep (skeletal)
gesture recognition models lies in the fact that MC-DCNN
networks are skeleton-structure agnostic. A naive direct use
of the model proposed by that paper does nevertheless not
yield to results significantly competitive against other ap-
proaches results, but still gives a first glimpse of neural ar-
chitectures for multi-variate sequences such as hand ges-
ture skeleton data. In [9] we introduce a new neural net-
work built upon this framework.

3 Dataset

To evaluate performances of several variations of the pro-
posed neural network model architecture we conducted ex-
periments on the Dynamic Hand Gesture-14/28 (DHG) da-
taset [7] created and introduced by DE SMEDT et al. in the
SHREC2017 - 3D Shape Retrieval Contest.

The DHG dataset consists in a total of 2800 labeled
hand gesture sequences performed by 28 participants.
The sequences are recorded by an Intel RealSense depth
camera and have variable lengths. Each labeled sequence
consists of the raw data sequence returned by the camera,
associated with two labels representing the category of
the recorded gesture. For all sequences a depth image of
the scene is provided at each timestep, alongside with
both a 2D and a 3D skeletal representation of the hand.
The hand skeleton returned by the Intel RealSense depth
camera is presented in a paragraph below. Each gesture
falls into one of 14 categories : Grab (G), Tap (T),
Expand (E), Pinch (P), Rotation clockwise
(RC), Rotation counter-clockwise (RCC),
Swipe right (SR), Swipe left (SL), Swipe
up (SU), Swipe down (SD), Swipe x (SX),
Swipe + (S+), Swipe v (SV), Shake (Sh).
Moreover, each gesture can be performed with either
only one finger or with the whole hand. That means that
gestures are classified with either 14 labels or 28 labels,
depending on the number of fingers used. The gesture
recognition method we introduce in the next section only
uses the 3D hand skeletal representation returned by the
Intel RealSense depth camera. At each time step the 3D
hand skeleton consists in an ordered list of 22 joints with
their positions p; = (x;,y:,z;) € R®, Vi € [1;22] in the 3D
space.

The dataset is split into 1960 train sequences (70% of the
dataset) and 840 test sequences (30% test sequences).

4 Parallel Convolutions Model

4.1 Motivation

The goals of the original contest where the DHG dataset
was introduced were to (1) study the dynamic hand gesture
recognition using depth and full hand skeleton, and to (2)
evaluate the effectiveness of recognition process in terms
of coverage of the hand shape that depend on the num-
ber of fingers used. Nevertheless, the goals of this paper
are different. Our first goal is to demonstrate that carrying
out hand gesture recognition with a sparse representation

of the hand (i.e. the 3D hand skeleton) only is competitive
with other existing approaches that often focus on RGB-D
images. The second goal of this paper is to propose a gene-
ric neural network that does not require recurrent cells to
achieve this recognition.

4.2 Model Architecture

In [9] we introduce a multi-channel convolutional neural
network with two feature extraction modules and a residual
branch per channel. The whole model architecture is de-
picted in figure 1. The architecture is inspired by the high-
resolution and low-resolution networks from [20]. The use
of residual branches in our architecture is inspired from the
original Residual Networks paper [11]. Residual branches
make networks easier to optimize because of a better gra-
dient backpropagation in the training phase ; they empiri-
cally improve the accuracy of deep networks.

Our network inputs consist of multiple, fixed-length, 1D
sequences (s1,52,...,5.) Where ¢ € N* is the number of se-
quences (channels). Each of these sequences s; is directly
fed to three parallel branches. The first branch !, impro-
perly called residual branch in this paper, is almost an iden-
tity function. Instead of outputting exactly its input we per-
form a pooling on the input in order to reduce the risk of
overfitting. The second and third branches both present a
similar architecture, detailed below, designed for feature
extraction.

In these two branches, the input is processed as follows.
The input is passed to a convolution layer, whose output is
subsampled using a pooling layer. This process is repea-
ted two more times. For a single branch, the difference
between all the three convolutions resides in the num-
ber of feature maps used ; the difference between the two
branches resides in the size of the convolutions kernels. Ha-
ving two kernel sizes for the time convolution layers allows
the network to directly work at different time resolutions.
Formally, let 2("B) represent the input of the I-th convolu-
tion layer of the B branch, K("#) be the number of feature

maps, Wk(l’ﬁ ) the k-th convolution filter of the I-th convolu-

tion in the B branch, and b,(cl’ﬁ ) the bias shared for the -t

filter map. The output 4(/+1) of the [-th convolution layer
is calculated as

RU+1B) — 5 (h(l,ﬁ) cw P +b,£’*ﬁ>)

where ¢ is the activation function. This output RU+LA)
serves as the input of the pooling layer that directly follows
the convolution layer.

For a single channel, the outputs of the three branches are
concatenated into a single vector. Finally, a multi layer
perceptron “merges” the -concatenated- vectors of all the
channels together and acts as a classifier. There are as many
MLP outputs as the number of gesture classes.

In our experiments, we have two branches (high resolution
and low resolution branches) : § € [1;2], 3 convolution

1. middle branch in figure 1



FIGURE 1 — Ilustration (borrowed from [9] in which the network architecture is introduced) of the parallel convolutional
neural network. Every channel is processed separately before the Multi Layer Perceptron. The parallel feature extraction
module presented on the right is not shared between the 66 channels.

and pooling layers : / € [1;3], and K("B) = 8 feature maps
for I =1 or I =2 and K""#) = 4 feature maps for [ = 3.
The multi layer perceptron has 1 hidden layer with 1996
hidden units. All of the neurons in our network use the
ReLU activation function : o(x) = ReLU(x) = max(0,x),
with the exception of the output neurons which use the soft-
max activation function. All of the 3 [ X2 X c¢] subsampling
layers use an average pooling with a temporal pool size
of 2. Average pooling computes the average value of fea-
tures in a neighborhood (of 2 time steps in our case), while
max pooling extracts the maximum value of the features in
the neighborhood. Empirically, it has been shown that max
pooling outperforms average pooling in image recognition
problems [1]. Nevertheless, experiments we conducted on
the choice of the pooling method for our model showed that
our model exhibits better results with average pooling (we
see a 0.88% decrease in validation accuracy for the model
with maximum pooling rather than the average one for the
model configuration presented in this paper).

4.3 Architecture Tuning

To justify the model architecture, we study the perfor-
mance of -successive improvements of- a MC-DCNN mo-
del, created by tweaking its architecture. We iteratively
choose the input data format, the activation function used,
the number of convolution layers and feature maps, the re-
gularization rate, the pooling method, and finally we intro-
duce a residual and two parallel CNN branches.

Window length. Our model takes a fixed length gesture
sequence. In practice, since the hand gestures from the
DHG dataset are relatively short, we do not use a sliding
window over the sequences as they occur, but rather sim-
ply resample them in time to fit in a fixed time window. To

determine the length of the window, we start with a simple
mono-branch convolution-pooling model (with 4 convolu-
tions instead of 3 in the final model) and evaluate its vali-
dation accuracy depending on the input duration after re-
sampling (see table 1). The window length we chose is 100
timesteps.

| Input Length || Train Acc. | Validation Acc. |

10 97.30% 82.80%
50 98.88% 84.59%
75 98.42% 86.26%
100 98.78% 87.10%
150 98.37% 85.78%
200 98.01% 84.59%

TABLE 1 — Accuracy after training the model for 50 epochs

Activation function. While the choice of the rectified
linear unit (ReLU) function is a de facto standard in
recent deep learning models, each type of activation func-
tion has its pros and cons [13]. We thus decided to in-
vestigate whether we should use the exponential linear
unit (ELU), the rectified linear unit (ReLU) or the sig-
moid activation function as the network activation func-
tion. As a reminder, these activations are defined as fol-
lows : ReLU(x) = x* = max(0,x), Sigmoid(x) = H%’
Alef—1) ifx<0

x ifx>0"
hyper-parameter to be tuned.
After training the same model for a limited -but sufficient-

and ELU (x) = where A >0 is a



number of epochs and evaluating its performances on the
validation set (see table 2), we chose to use the ReLLU func-
tion as the network activation function. ELU are ReLU
yield to similar results, although ELU is more computatio-
nally expensive. Overall ReLU reveals to be a good choice,
one of the reasons being that it introduces sparsity effect on
the network.

| Activation Function [| Training Acc. | Validation Acc. |

Sigmoid 7.30% 6.81%
ReLU 91.63% 83.51%
ELU 94.74 % 82.68%

TABLE 2 — Accuracy after training the model for 50 epochs

Other activations worth considering in future works in-
clude Leaky ReLLUs or Parametric ReLUs, as well as the
Swish activation function.

Parametric ReLLUs are similar to ReLUs but cells do not
“die”, which can be the case with ReL.U due to the backpro-
x ifx>0
ux ifx <0’
The coefficient u is learnt during the network training.
The Swish activation function has empirically been shown
to display better performances than the ReLU activation
function [27] and is defined by Swish(x) = x- Sigmoid (fx).

pagation issue when x < 0. PReLU (x) =

Number of layers. Following a classical convolution-
pooling architecture schema, with a single branch and wi-
thout dropout, we evaluate the performance of the mo-
del for a few epochs. The models we evaluate are com-
posed of convolutions with ReLLU activations. We denote
Creru (8,5) (or simply C(8,5)) a convolution layer with 8
feature maps and a kernel of width 5, followed by a ReLU
activation. We denote P(2) an average pooling layer of size
2. Results are presented in table 3. We chose to use a depth
of 3 convolution+pooling layers, since it leads to the best
(average) validation accuracy. The depth is likely to be re-
lated to the sequence length though, and longer sequences
may benefit from being processed by a deeper network, if
one wanted to change the input length.

the use of dropout in the previous layer with a dropout rate
of 20%, which is the rate we finally chose.

Model architecture
Ceu(4.5) | P(2)

Cru(4,5) | D(0.2)
Cew(4,5) | D(0.2)

Training Acc. | Validation Acc.
98.98% 87.10% Cr1u(8,5)
98.11% 88.41% Crru(8,5)
98.98% 89.37% Crru(8,5)

—P(2)
P(2)
PQ2)

CreLu(4,5)
Creru(4,5)
Crery (4,5)

P(2)
P(2)
D(0.2)

P(2)
P2)

P(2)

TABLE 4 — Acc. after training the models for 100 epochs

Pooling method. Average pooling seems to function bet-
ter than max pooling on the input data for our model : it
outperforms max-pooling by +0.88% in accuracy (result on
the 14 classes case). 1D physical sensors data and 1D mo-
tion capture data present more regularity than other 1D data
such as text, which means that the data is more compres-
sible (in the time domain). With 1D gesture data it is easier
to filter outliers (e.g. because of of physical constraints on
the gesture), and outliers have less meaning than outliers in
the text domain. For specific gesture recognition applica-
tions involving a lot of semantics like sign languages, such
assumptions may probably not hold. We suppose that ave-
raging values from a 1D channel sequence helps to reduce
outliers weight with the smoothing. Average pooling may
act as a regularizer. As gestures are smooth, averaging the
signal probably leads to more signal removal than noise re-
moval.

Residual and Parallel CNN branches. We duplicated
the original CNN branch obtained, and add a pseudo-
residual branch constituted of pooling only, whose aim
is to better backpropagate the gradient during training.
To achieve better performance -i.e. better validation ac-
curacy, recall and Fj scores- we adopt a multi-(temporal-
)resolution approach : we chose to change the kernel width
depending on the branch (instead of using a kernel of width
5, we use two kernels of sizes 3 and 7).

We highlight the importance of using three parallel
branches for the 28 gesture classes case in table 5.

[ Model [ w/oResidual [ w/o High Resolution | w/o Low Resolution |
14 classes —1.05% —0.53% —1.31%
28 classes —5.24% —6.38% —4.96%

#conv

Architecture

Train acc.

Validation acc.

2 C(8,5-P2)—C(4,5 -P(2) 94.74% 82.68%
3 C(8,5 - P)C(3,5) —P(2)—C(4,5) - P(2) 95.71% 84.95%
4 | CB,5)—P(2)—C(8,5) —P(2)—C(#5)—P(2)—C(#,5) - P2) | 9561% 84.59%

TABLE 3 — Accuracy after training the model for 50 epochs

Dropout. To reduce overfitting, we use dropout [31]
which consists in randomly setting some layer inputs to 0
at each update during training time only. Results of some
experiments we performed to determine whether to apply
dropout to the convolutions layers or not, as well as to de-
termine their rate, are presented in the table 4 below (still
on a model without parallel branches). We denote D(0.2)

TABLE 5 — Model acc. degradation on branch ablation

4.4 Training

In this section we detail the hyperparameters we used as
well as some other information related to the training.

Weights Initialization & Batching. Each training batch
contained a set of 32 skeletal gesture sequences of length
100, where a skeletal gesture sequence is a list of 22 x 3 =
66 unidimensional sequences.

For the training, we used the Xavier initialization (also
known as GLOROT uniform initialization) [10] to set the
initial random weights for all the weights of our model.



Implementation. Our model was implemented twice
using either PyTorch or Keras as a high level library
above Tensorflow. CUDA/CuDNN were used for GPU
parallelization of the computations.

Hardware. We trained our model on one machine with a
GPU (NVIDIA GeForce GTX 1080 Ti). Using the hyper-
parameters presented in the paper, each training step took
about 12 seconds. We trained the model for 1000 steps.

Loss & Optimizer. We selected negative log-likelihood
as the cost function. To train our model, we used the Adam
optimization algorithm [14] which calculates an exponen-
tial moving average of the gradient and the squared gra-
dient. Two parameters, namely f8; and f3,, are used to res-
pectively weight the first moment (i.e. the mean) and the se-
cond moment (i.e. the uncentered variance) of the gradient.
For the decay rates of the moving averages we used the pa-
rameters 31 = 0.9, B, = 0.98. The values of other parame-
ters were o = 1073 for the learning rate, and &€ = 1078,
All these values are either identical (a, B, €) or close

By = ﬁz(def ault) _ 0.999) to the default values proposed in
the Adam article.

4.5 Results on the DHG dataset

We work on the DHG dataset presented on section III. All
sequences are preprocessed as described in the previous
section. Each resampled skeletal sequence is split into 22
joints’ sequences, and then into 3 x 1D sequences of the
(x,y,2) positions of the joints. This leads to 66 = 22 x 3
input sequences that are fed to model we introduced. The
outputs of the last layer of the MLP represent the labels
we will attribute to the gesture corresponding to the 66-
channel input. Since there are two classification tasks, de-
pending on the number of classes, we use two different
neural networks with the same architecture, except that one
has 14 outputs and the other has 28 outputs.

On the DHG dataset, our model achieves a 91.28% clas-
sification accuracy for the 14 gesture classes case and a
84.35% classification accuracy for the 28 gesture classes
case. These are the best recognition accuracy scores known
for this challenging dataset at this day (see table 6).

In [26, 8, 7, 24, 6] more or less complex but handcrafted
features are used in the classification pipelines. The main
advantage of deep-learning approaches is to automatically
discover such (sometimes complex) features. [3] is based
on deep-learning architecture. It directly applies LSTMs -
but without applying CNNs beforehand- to the skeletal data
(and to the handcrafted features). Introducing a convolution
step before the LSTMs could possibly improve the model
in [3]. Our model likely uses more efficient representations
due to the use of the parallel branches. A comparison of the
different approaches is presented in table 6.

4.6 Discussion

Dataset Size,. A common barrier to using deep-learning
is small datasets. The DHG dataset has roughly 3000 ba-
lanced sequence instances (1960 train sequences + 837

‘ Approaches H Accuracy 14 gestures H Accuracy 28 gestures
OREIFE] & LIU [26] 78.53 74.03
DEVANNE et al. [8] 79.61 62.00

GUERRY et al. [7] 82.90 71.90
OHN-BAR & TRIVEDI [24] 83.85 76.53
CHEN et al. [3] 84.68 80.32

DE SMEDT et al. [6] 88.24 81.90
Ours 91.28 84.35

TABLE 6 — Accuracy results on the DHG dataset

‘ | Ours | DE SMEDT et al. ‘ Difference ‘
‘ Gesture ‘ Precision ‘ Recall ‘ Fy-score ‘ Precision ‘ Recall ‘ Fi-score ‘ Fj-score ‘
G 72.4% 94.8% 82.1% 67.5% 57.0% | 61.8% 20.3%

T 71.2% 77.0% 74.0% 85.2% 87.0% | 86.1% -12.1%

E 84.7% 90.9% 87.7% 84.8% 87.0% | 85.9% 1.8%

P 90.9% 78.4% 84.2% 52.1% 61.0% | 56.2% 28.0%

RC 69.2% 98.2% 81.2% 80.0% 77.5% | 78.8% 2.5%
RCC 97.8% 77.6% 86.5% 90.9% 85.5% | 88.1% -1.6%
SR 91.2% 100.0% | 95.4% 85.1% 92.5% | 88.6% 6.7%

SL 98.0% 88.9% 93.2% 78.4% 85.5% | 81.8% 11.4%
SU 98.2% 79.4% 87.8% 89.3% 85.5% | 87.4% 0.4%
SD 93.3% 91.8% 92.6% 80.8% 88.0% | 84.3% 8.3%
SX 100.0% 89.9% 94.7% 95.8% 85.0% | 90.1% 4.6%

S+ 98.3% 100.0% | 99.1% 90.2% 98.5% | 94.1% 5.0%
SV 90.6% 100.0% | 95.1% 93.2% 92.0% | 92.6% 2.5%

Sh 96.2% 71.4% 82.0% 88.6% 81.0% | 84.7% -2.7%

TABLE 7 — Comparison of F; score in the 14 gesture classes
case
Fj scores by gesture, for a version of the model without the “residual”
branch ; very similar results are obtained for the model with the

“residual” branch.

test sequences) of 100 timesteps with 66 1D-channels. The
proposed model has 13829454 free parameters in total, or
13829454 /66 ~ 209537 free parameters by channel. Given
that each of the 1960 training sequences has 100 times-
teps, and because of the regularization applied (DropOut
with p = 0.2), the model likely does not overfit. Qualitati-
vely speaking, no overfitting was observed experimentally.
Zero-, One-, or Few-shot learning [39], as well as data aug-
mentation, transfer learning, model compression and distil-
lation techniques can help to reduce the minimum size of
the dataset required for training and validating deep lear-
ning models.

Preprocessing, Average Pooling & Data Regularity.
The input to the network assumes a sequence of poses,
which are provided by the Intel RealSense camera. The
poses can also be retrieved by using body-worn sensors
or estimated by segmenting videos [28]. In that specific
case, occlusion issues may arise, leading to wrong joint po-
sitions. Data augmentation may help reduce this problem.
Invariance by rotation is not taken into account yet by the
network.

We re-sampled signals to a vector of size 100 due to the
nature of the motions that were all both relatively short as
well as all being about the same duration in order of magni-
tude. This may not hold for motion capture data with very



variable time spans for which one may prefer encode with
a convolution and memorize with an reccurrent cell like an
LSTM or a GRU.

Recurrence ; Speed. One of the goals of this paper was
to study if a convolution-only network could lead to state-
of-the-art results for gesture classification. While this re-
sult is established for short gestures with limited semantic
meaning, the question remains open for gestures with very
variable time span. For those cases, re-sampling the input
might not always work and it might probably more effi-
cient to insert recurrent cells in the model, e.g. after the
convolutions, in order to benefit from the (long time range)
context by keeping track of the processed input in a me-
mory. In that case, one should carefully check if the mo-
del does not overfit, as memory cells are often harder to
regularize [34]. Recurrent cells also tends to significantly
increase the training time although there is ongoing work,
e.g. [2], to alleviate this issue. LSTMs and GRUs can warp
time through their gating mechanism, but since CNNs can
have gating mechanisms too, it would be interesting to see
if gestures with very variable time span and limited seman-
tic meaning could be efficiently classified without invol-
ving any recurrent or auto-regressive mechanism. One of
the main advanges of using sparse (skeletal) input data ins-
tead of dense (image) input data lies in inference speed.
On a (good) Intel Xeon CPU E5-1630 v4 @ 3.70GHz pro-
cessor, without any GPU, the inference time is as low as
~ 10735 for a batch of 32 gestures, which is several orders
of magnitude sufficient for real-time applications, even on
less efficient processors for embedded systems.

5 Conclusion

We introduced and studied a new convolutional neural net-
work which classifies (recognizes) hand gestures using ske-
letal data only. This neural network extends the MC-DCNN
framework in several ways. First, it introduces parallel pro-
cessing branches for each signal. The advantage of two
convolutional branches over a single one seems to be that
it allows the architecture to access different time resolu-
tions of each signal. Second, the use of residual connec-
tion for each signal allows the gradient to better backpro-
pagate in the neural network. Experimentally, it seems to
be useful not only regarding the duration of network trai-
ning, but also in terms of accuracy results. Finally, dropout
is also used as a regularization technique. From a neural
network perspective, we observe that (intra- and inter-) pa-
rallel processing of sequences using convolutional neural
networks can be competitive with neural architectures that
use cells specifically designed for sequences such as GRU
and LSTM cells. We applied our model to perform hand
gesture classification on a challenging hand gesture dataset
(DHG dataset). Our method outperforms all existing publi-
shed methods on this dataset. Our model achieves a 91.28%
classification accuracy (+3,04% improvement) for the 14
gesture classes case and an 84.35% classification accuracy
(+2,45% improvement) for the 28 gesture classes case.
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