
End to End Vehicle Lateral Control Using a Single Fisheye Camera

Marin Toromanoff∗†, Emilie Wirbel∗, Frédéric Wilhelm∗, Camilo Vejarano∗, Xavier Perrotton∗,
Fabien Moutarde†

∗Valeo Driving Assistance Research France,
name.surname@valeo.com

†Center for Robotics, MINES ParisTech, PSL Research University, France
name.surname@mines-paristech.fr

Abstract— Convolutional neural networks are commonly
used to control the steering angle for autonomous cars. Most
of the time, multiple long range cameras are used to generate
lateral failure cases. In this paper we present a novel model
to generate this data and label augmentation using only one
short range fisheye camera. We present our simulator and how
it can be used as a consistent metric for lateral end-to-end
control evaluation. Experiments are conducted on a custom
dataset corresponding to more than 10000 km and 200 hours
of open road driving. Finally we evaluate this model on real
world driving scenarios, open road and a custom test track
with challenging obstacle avoidance and sharp turns. In our
simulator based on real-world videos, the final model was
capable of more than 99% autonomy on urban road.

I. INTRODUCTION

The ultimate goal for autonomous vehicles is to drive
in any environment without any human input. To achieve
this, autonomous cars have to analyze their environment
using data coming from different sensors and control the
car accordingly. In the most common approach, this task
is cut into different modules then fed into a rule-based
control algorithm which actually drives the car. An alternate
method would be to make everything in one unique module,
i.e. directly taking decisions from raw sensor data without
relying on rule-based control. This is the case of end-to-end
learning.

In order to train a network to output end-to-end controls,
one can train it by trial and error using Reinforcement
Learning (RL). Such algorithms are usually trained and
tested in a simulator as the work of Perot et al. [1]. Pan et al.
[2] tried to go one step closer to real test by first training a
Generative Adversarial Network [3] to generate real-looking
images from the synthetic images of the simulation and then
give these generated images as input to the RL algorithm.
But further work has to be done before real car tests could
be made safely.

Another way to train an end-to-end algorithm is to use
an expert behavior (generally a human driver) as the ground
truth. The goal is then to imitate the expert by training a
neural network to produce from the raw sensor data the
same control output as the expert. This is called imitation
learning. The purpose of this work is to use imitation learning
to perform lane keeping on open road in diverse locations
(with or without road markings, urban streets, country roads,
highways) and under diverse weather and lighting conditions.

A live demonstration of an end-to-end driving car was also
shown at CES 2018 using this work.

The main problem of imitation learning is the nearly
perfect behavior of the expert. Since failure cases (i.e.
driving too far away from the desired trajectory) are very
rarely encountered, the neural network will never learn to
recover from lateral bad positioning of the car, because it
has not been provided with enough data. To tackle this issue,
synthetic failure data can be created to train the network to
react when those failure cases are encountered. In this article,
we will refer to this process as label augmentation. Indeed,
the input data and the label are being changed at the same
time, contrary to usual data augmentation which changes the
input, but not the label.

Bojarski et al. [4] were the first to successfully train
a Convolutional Neural Network (CNN) to infer steering
angle from front image by imitation learning, and control
the car online (itself inspired from the work done in 1989
by Pomerleau et al. [5]). Their label augmentation is made
using three front cameras to simulate small translations and
rotations of the car corresponding to lateral failure case.
Since then, a lot of work has been conducted offline [6]
[7] [8] on the Udacity challenge and dataset [9].

However there is a huge difference between making an
offline prediction and performing an online control. Offline
prediction does not take into account the potential accumu-
lation of errors, which means these approaches would not be
directly applicable on a real car. Particularly they all use tem-
poral information with a Long Short-Term Memory (LSTM)
[10] and to our knowledge it’s still an open problem to handle
correctly temporal information with label augmentation.

Furthermore, we can notice that label augmentation was
used in all few works performing actual steering control
of a real car. For example Hubschneider et al. [11] train
a CNN to infer steering angle from a front camera data,
complmented with some high level navigation information
(turn left or right) to add navigation decision to the lane
following paradigm. They generate their label augmentation
by shearing the images to simulate a lateral offset. Codevilla
et al. [12] use a 3-camera setup for label augmentation,
and investigate how to handle specific triggered maneuvers
such as turning at an intersection. Yang et al. [13] trained
a network to infer speed and steering control from front
image with the same end-to-end network. It is split between

ar
X

iv
:1

80
8.

06
94

0v
1 

 [
cs

.R
O

] 
 2

0 
A

ug
 2

01
8



one steering inference branch and another one for speed
inference, which share their first layers. They use side
cameras to generate lateral failure cases as Bojarski et al.
[4]. We can notice that they are using an LSTM in their
network, but only on the speed inference branch.

Our first contribution is to use only one fisheye camera for
both inference and training. This makes it different from [4]
[13] who use three cameras, or from Hubschneider et al. [11]
who shear their images. Our label augmentation model gives
us realistic images because we use the camera calibration and
intrinsics, and take advantage of the wide field of view of a
fisheye camera. Having only one fisheye camera also reduces
integration constraints and makes it identical to the test setup.
Following the idea introduced by Nvidia [4], we use this
label augmentation to build a simulator based on real-world
videos. We make it even more realistic by modeling the
physics of the car. This simulator is then extensively used as
a validation tool. We argue that our simulator evaluation is
more consistent than loss, or the steering angle Mean Square
Error (MSE). Indeed, it allows to estimate the number of
unacceptable deviations from the human piloted trajectory
(referred to as recoveries in the following).

Our second contribution is an extensive quantitative study,
with our realistic simulator, of the influence on the online
performance with error accumulation, of label augmentation,
failure case generation and training data resampling. To do
so, we leverage a dataset containing more than 200 hours of
driving, to be compared with 72 hours [4] and 5 hours [11]
[13]. This bigger dataset makes it possible for our network to
have a better generalization capacity, i.e. it can handle new
situations better.

Finally we show qualitatively that some uncommon and
challenging use cases (sharp turns, object avoidance) can be
realized with imitation learning leading to a live demonstra-
tion at CES 2018 at Las Vegas.

Our experimental setup is explained in Section II: target
cars and test scenarios, data collection method and network
architecture. In Section III our method for training our
network is described: first the label augmentation and data
selection approach, then the principle of our simulator used
to get quantitative test performance. Quantitative evaluations
and interpretations are presented in Section IV.

II. EXPERIMENTAL SETUP

In this section, the different cars in which this lateral
end-to-end control system has been integrated are presented,
along with the target use cases, datasets used, and the neural
network architecture with its training hyper-parameters.

A. Target cars

Three cars are used for data collection and testing. They
are equipped with a similar hardware suite, in particular a
Controlled Area Network (CAN) bus to obtain the current
speed and steering wheel angle, and a fisheye camera. The
camera is a Valeo cocoon camera placed in the middle of
the bumper. The camera has a 190◦ horizontal field of view,
and provides an RGB image with an original resolution

of 1280x800 pixels at 30Hz. On each car, the camera is
positioned at a similar height (around 50 centimeters).

The two first cars are equipped with an active drive-by-
wire control, which makes it possible to actuate the steering
wheel, through a MicroAutobox device. One Tegra board of a
NVidia DrivePX2 AutoChauffeur is used to run the network
inference on both cars. The last one is purely passive,
and used to record the initial manual driving database, as
described in II-B.1 (it is easier for security reasons to use a
passive car for human behavior recording).

B. Target scenarios and datasets

1) Open road: To train on openroad data, a dataset has
been recorded in the Paris region under numerous weather
conditions. It represents more than 10000 km and 200 hours
of open road driving. It contains different kinds of roads:
highways, urban streets, country roads etc (see Figure 1).
This dataset was split into a training set (around 10 million
images) and a testing set (around 3 million). All images
where the driver wanted to turn or to change lane are
removed, based on the car blinkers. Similarly, very low speed
images are removed, to avoid specific situations such as
parking lots, or crowded urban areas. This is because the
target of this work is lane keeping, so these situations need
not be handled and could impair the training.

(a) Urban (b) Country road (c) Highway

Fig. 1: Cylindrical projection of the front fisheye camera,
with representative samples of the types of roads traveled

2) Test track: As illustrated in Figure 2, the test track is
composed of two sharp turns (16m in diameter), one dynamic
barrier, one straight section and a road deviation through a
chicane of traffic cones. The lines are masked in the two
sharp turns to show that we could even handle situations
where classic lane based control would have difficulties.

Barrier

Cone chicane

Grass Parking

Jersey barriers

100m

16 m

Fig. 2: Test track (not to scale)

The target here is to adapt the car steering: follow the lane
in the straight line, take both sharp turns (in which steering
wheel angle could go up to 500◦), and handle the cones
chicane correctly. The longitudinal behavior of the car is



controlled manually or by another network (which was the
case for the live demonstration).

The described test track contains scenarios that are not
common on open road. Therefore some data had to be
collected specifically on the test track to learn those unusual
situations. Another focus of those recordings is to gather as
much variability as possible in terms of lighting and weather
conditions, to gain robustness in the final behavior.

We recorded the data as follows: 10 lap series which were
reserved for training, and shorter 3 lap series which were
kept for validation and testing. The sessions were spaced by
roughly one hour over the day, from sunrise to full night.
For each test track location, about 5 days of recordings were
done, with around 8 recording sessions per day, resulting in
roughly 360k training images and 110k testing images.

C. Neural Network architecture
Our CNN takes a 200x66 image as input. It contains 10

layers and is close to the one from Nvidia [4]. It is described
in Table I. The hyperparameters for the network are described
in Table II (note that some dropout was added to the fully
convolutional layers during training).

TABLE I: Network architecture with layers type, parameters
and size (Conv - convolutional, FC - fully connected)

Name Size Filters number Stride
Normalization 200x66x3 N/A N/A

Conv #1 5x5 24 2
Conv #2 5x5 36 2
Conv #3 5x5 48 2
Conv #4 3x3 64 1
Conv #5 3x3 64 1

FC #1 1152x1164 N/A N/A
FC #2 1164x100 N/A N/A
FC #3 100x50 N/A N/A
FC #4 50x10 N/A N/A
FC #5 10x1 N/A N/A

The network was trained to minimize the squared loss
between the inferred steering angle and the ground truth
(with correction from the label augmentation). We added a
L2 regularization term to avoid overfitting.

L(Y, Ŷ , θ) = LMSE(Y, Ŷ ) + λregL2reg(θ)

TABLE II: Network training hyperparameters

Parameter Value
learning rate 10−4, decay 0.95 by epoch

L2 regularization 5.10−4

Dropout 0.8
Batchsize 100

III. METHOD

This section introduces the principle of the label augmen-
tation. Our simulator based on this label augmentation and on

existing control laws is then described. Finally the different
data selections on the initial dataset are detailed.

A. Label augmentation

The goal of label augmentation is to simulate images
that would be produced if the car was slightly translated
and rotated from the original position, and add them to the
training data. From the original recorded images, an artificial
image corresponding to a slight displacement is generated
from the fisheye camera (see III-A.1), then the corrected label
is computed using classical control laws (see III-A.3)

1) Using fisheye data: The raw fisheye image is not
directly used to predict the steering wheel angle because
of the distortions induced by the very large field of view.
Instead, it is projected into a cylinder perpendicular to the
ground plane. This projection is invariant to the camera
orientation in the car and so we get homogeneous images
from our 3 cars, given that the camera height is similar.
Finally, the image was cropped and resized to a lower
resolution using an inter area interpolation, see samples with
different resolution in Figure 6.

With this cylindrical projection, simulating car rotations
around the Z axis is trivial: the image is shifted laterally,
and the lateral shift is proportional to the rotation angle.

(a) Highway, original (b) Urban, original

(c) Highway, +1m simulated (d) Urban, +1m simulated

(e) Highway, -1m simulated (f) Urban, -1m simulated

Fig. 3: Example of different lateral offsets augmentation
(highway and urban environments)

Simulating a lateral translation requires additional hy-
potheses. In practice, since the camera calibration is known,
only one world coordinate is enough to simulate a translation,
because it removes the ambiguity of projecting from image
space to metric space. Here, we make the assumption that
all points below the horizon are on the ground (z=0) and all
points over it are at an infinite distance. This way, an image
from a camera shifted in the Y direction can be generated by
computing the world X and Y position of every point below
the horizon, subtracting the shift from the Y value and taking
the corresponding pixel from the source image.

This generates some artifacts when this assumption is not
respected, for example on other road users, but not on the
section relevant for the control, which is the road and the far
perspective. Figure 3 illustrates the impact of different lateral



offsets on the projection: on 3c and 3e, the deformations
are barely visible, on 3d and 3f they can be seen under the
horizon on vertical objects. Globally, the appearance is more
realistic than the shear proposed in [11]. We argue that these
deformations have a limited impact on the training compared
to the improvement of doing label augmentation.

2) Label augmentation range: The more the virtual point
of view is moved away from the real one, the more the
deformation induced by the image generation process is
visible. Additionally, on some frames (particularly in multi-
lanes condition) when the translation chosen is too large,
the car seems to be on another lane, so the corrected
label we are giving is not consistent. Finally, in practice,
when the network is driving in inference, the car never
encounters a deviation of more than 5 degrees at wheel angle
compared to the human trajectory: indeed, at most common
speeds, the car goes off-road before the angular deviation
reaches such value. This is why label augmentation has been
performed within a limited range to avoid encountering these
issues: zero-centered Gaussian distributions, with a mean and
standard deviation of 0.45m and 5 degrees for translation and
rotation respectively.

3) Corrected label: To generate the labels corresponding
to the generated images, a simple lateral controller, inspired
by [14] [15], is used to model the human driving. It is
assumed that the driver is following a trajectory (the center
of the lane) using the following action on the steering wheel:

δh(t) = f(κ(t), v) +Ke(v)e(t) +Kθ(v)θ(t)

where δh(t) is the steering wheel angle of the human driver,
f(κ(t), v) is a function of the road curvature κ(t) and the
vehicle speed v, e(t) and θ(t) are respectively the lateral
position and angular errors that the driver is trying to mini-
mize. Finally, Ke(v) and Kθ(v) are control gains in lateral
error and angular error respectively. Their values are set using
existing lateral controllers developed for automated vehicles.
In the case of the target test cars, Ke(v) = 12/v m−1 and
Kθ(v) = 5.3.

The augmented data is then generated with a different error
in position e(t)+∆e and angle θ(t)+∆θ with regard to the
recorded data. The differences in position ∆e and angle ∆θ
are used to generate fisheye data and the corresponding label
δa (steering angle). The new label δa is simply obtained by
adding Ke(v)∆e+Kθ(v)∆θ to the steering angle δh(t) of
the non-augmented data. This makes it possible to generate
δa(t) directly from δh(t) without calculating the unknown
data f(κ(t), v), e(t), θ(t).

B. Our simulator

We argue that label augmentation is the key to make
imitation learning viable and that the mean error (squared
or absolute) is not a valid metric to compare performance
because this metric does not take into account error ac-
cumulation. A network using label augmentation could be
outperformed (with this metric) by the same network trained
without label augmentation, but the second one will fail
to drive a real car. As a consequence, the actual impact

of the label augmentation can only be measured with the
inference in the loop for the steering control. However, there
is currently no online steering control benchmark to compare
with existing methods, in particular [4]. To compensate for
that, we provide quantitative performance measurements in
our simulator and qualitative estimation with one of our test
cars in the loop. In practice, our simulator, though simple, is
accurate enough to get a realistic estimation of the network-
in-the-loop behavior of the real car.

One ideal metric would be to let the network drive a
real car on diverse scenarios and record the time it can
drive without any human recovery, but this is dangerous to
do in practice. This is why we have designed a simulator
based on real images, inspired by the idea from Nvidia [4]
(and to our knowledge no other article used this tool). This
simulation is based on the dataset and the label augmentation
principle presented earlier. Using this simulator, we can
obtain quantitative performance assessment of each network
we trained, see IV-A for more details. The metric we used
is the ’percentage of autonomy’ introduced by Nvidia [4].

Current
image

Image
transformation

Trained
network

Network
bicycle model

Current
recorded angle

Human
bicycle model -

Simulated
point

of view

Predicted
angle

Network
position

Offset between
human and network
positions ∆e∆θ

Human
position

Fig. 4: Simulator architecture: recorded images are trans-
formed by the difference between recorded trajectory and
network-in-the-loop trajectory

The simulator itself is based on the bicycle model [16],
[15] which is commonly used for lateral control application
due to its simplicity and its ability to represent correctly the
vehicle dynamics. Here, the bicycle model is used to evaluate
the behavior of the network compared to the recorded data.
To this end, two bicycle models are running in parallel:
one which estimates the position of the car induced by
the recorded human behavior, and one with the steering
prediction network in the loop. The first one is estimating
the dynamics and position of the true vehicle from the actual
steering angle and velocity of the human driver. The second
bicycle model computes how the vehicle would behave if
the network was actually controlling it. For that purpose,
the input image is modified according to the difference of
position between the bicycle models using the same process
as the label augmentation technique described in III-A. This
modified image is given to the network in inference mode,
which produces the corresponding steering angle. This angle
is then fed to the second bicycle to get the new position of
the virtual car, and so on until the end of the sequence is
reached or the virtual car deviates too much and a recovery
is required (see section IV-A for the exact definition). This
is illustrated in Figure 4.



Figure 5 is a screenshot of the simulator running: the
actual and predicted trajectories are displayed, with the
generated image from the current trajectory deviation.

Fig. 5: Screenshot of the simulator, blue trajectory is human,
red is the car driven by the network. At current time, the
network is translated of 7cm on the right. Here the network
failed to take the turn, the red trajectory goes off-road, and
a recovery is done.

C. Data selection

In the original dataset, more than 90% of the steering
angles are within the segment [-10, 10] degree (which cor-
respond to around [-0.5, 0.5] degree for actual wheel angle).
This is why a network trained on the full dataset is biased
toward going straight. To avoid this bias, we evaluate three
different data selection on the training set. On “Selection
1”, around 50% of the straight angles are discarded from
the dataset. On “Selection 2”, around 85% of the straight
angles are removed. The goal is to see how much filtering is
needed to get a correct performance both in turns and straight
roads. Finally, a third “oversampled” distribution is tested
where images with high steering angle are oversampled,
in order to test if it is improving performance on turns.
Those distributions can be characterized with their standard
deviation (std), see Table III.

TABLE III: Characteristics of the data selections: standard
deviation (std) of the steering angles & number of samples
in the [-5◦, 5◦] range

Selection Steering std Small angle count
Original 21◦ 5M

Selection 1 26.4 ◦ 2.6M
Selection 2 35.3 ◦ 0.9M

Oversampled 56 ◦ 0.9M

The impact of different field of view and crop on the input
image is also evaluated, to determine the best projection to
be used.

All the results of these different choices will be discussed
in IV.

D. Fine tuning on test track

To finetune, the previous weights with the best generaliza-
tion capacity are used as an initialization, and the learning is
done with a smaller initial learning rate (10 times lower than
the initial one). The goal is to avoid having to record a large

dataset on these use cases, while ensuring demonstration
robustness. Some data from the initial dataset is kept to
ensure some generalization capacity. It is interesting to note
that the finetuning recordings were not performed on the
same day or time than the actual tests, and that the network
still generalized and performed without failure.

IV. RESULTS

We first evaluate our models quantitatively using our
simulator. We will describe the metric used and we present
the quantitative results of different models. We then show
more qualitative result on unseen environment, first on a new
simulation, then on real car on open road either in France or
in USA.

A. Building the test sequences for the simulator

TABLE IV: Description of test scenarios

Scenario Urban Highways Sharp turns
Image count 100000 70000 15000

Duration (min) 56 39 8

To compare our different tests during the development
and to have an idea about the behavior of the car driven
by the network, we built a representative test dataset. For
this purpose, sequences from the initial test set are manually
selected to represent different conditions. In the end, the
test set contains three main testing scenarios; urban, not
urban (country roads and highways) and sharp turns in any
situations (steering angle ≥ 100 degrees). These scenarios
are described in Table IV.

To quantitatively compare different algorithms, all of them
are tested on the simulator. First, the number of recoveries
in each scenario is computed. When the car driven by the
network is too far from the human trajectory, we assume
a recovery is needed and put it back on the human driver
position: we chose one meter to be the maximum allowed
distance with the human trajectory as in [4]. We can then
compute the percentage of autonomy using the metric intro-
duced by Nvidia [4] in each scenario and for each networks
trained. This autonomy is defined in the following equation
where R is the number of recoveries, tr is the recovery time
(we take 6s as in [4]) and T is the total driving time.

a = 1 − R tr
T

The mean absolute distance in translation between the
human and the network trajectory is also presented. But this
mean distance is biased because the car back is reset to the
perfect position after each recovery. In practice the autonomy
was the main criterion to compare different algorithms, and
the mean distance as a tie-breaker when the numbers of
human recoveries were close.



B. Results of different data selection

In Table V, networks trained with different data selection
are compared, with a baseline which is just going straight.
Note that because our approach is the only one using only
one fisheye camera, other approaches from the state of the
art cannot be applied here, because we cannot replicate
their label augmentation techniques. We can see from this
table that the original distribution gets good results on urban
and highway scenario but like expected the performance
on sharp turns is not satisfactory. Moreover removing a
proportion of straight angle (selection 1 and 2) improves
performance on sharp turns while keeping similar results
on urban and highway (even though highway seems to be
slightly impacted).

TABLE V: Autonomy (%) and mean absolute distance
(MAD, in cm) according to data distribution and validation
scenario, the baseline is just going straight.

Scenario Urban Highways Sharp turns
Metric Aut.

(%)
MAD
(cm)

Aut.
(%)

MAD
(cm)

Aut.
(%)

MAD
(cm)

Original 99.3 16 98.7 19 73.7 30
Sel. #1 98.9 15 97.7 25 83.7 27
Sel. #2 99.5 16 97.2 24 87.5 28
Oversamp. 98 18 91.8 29 82.5 29
Baseline 8 36 14 41 0 35

On the other side, the oversampled distribution yields
worse results than all others on highway and urban. Even
on sharp turns, it is even worse result than both selection 1
and selection 2. We assume that the oversampled distribution
goes too far, i.e. the oversampled distribution diverges too
much from the original distribution (see Table III).

Testing on different fields of view and crops (Figure 6)
showed that a bigger field of view leads to a higher count of
recoveries, around 80% more in each situation. We assume
that even if the network could theoretically learn to ignore
some part of the image, it can lead to better learning to
provide only useful information, i.e only the road and front
of the camera. This experiment confirms our initial choice
to crop the sky.

(a) 90 deg field of view (b) 135 deg field of view, less cropping

Fig. 6: Samples of the image sizes tested on the same scene

C. Bagging of different networks

Averaging multiple algorithms trained from different sub-
sets of the training set can lead to an improvement in
performance, this is an ensemble learning method called

TABLE VI: Comparison of performance between individual
networks and bagging

Scenario Urban Highways Sharp turn
Metric Aut.

(%)
MAD
(cm)

Aut.
(%)

MAD
(cm)

Aut.
(%)

MAD
(cm)

Weights #1 99.5 16 97.2 24 87.5 28
Weights #2 98.9 15 97.7 25 83.7 27
Weights #3 99.3 16 98.7 19 73.7 30
Weights #4 98.6 18 92 26 85 29
Weights #5 98.4 15 96.4 21 83.7 28
Bagging 99.5 13 98.7 19 87.5 27

bagging. This improvement can be observed in the simulator.
However the boost is larger when taking the average of
networks trained with different parameters for data selection,
which differs from the standard bagging because the different
subsets are drawn from different distributions on the initial
dataset. Table VI shows an example of such results. All
individual weights are trained on a different training set:
different speed selection and steering angle distributions. We
can see that on all validation scenarios, the performance is
better for the bagging than any individual weights.

D. Tests on Grand Theft Auto (GTA) as simulator

One interesting intermediary result was to test it in the
video game GTA as simulator. The network was able to drive
in GTA when it was trained only on real image and never
seen an image of this world before. The video is available at
https://youtu.be/y8yJQ0jGnco. This strong result
proves the generalization capacity of the network and led us
to real car testing.

E. Open road results on real car

Once a satisfactory performance was reached on the simu-
lator, the network was integrated in a real car, to demonstrate
that it was able to drive robustly on open road. However,
for the first tests on an active car, the results were poorer
than expected. This was due to the camera calibration of
the test car which was different from the one of the training
car. Indeed, we noticed that the network was very sensitive
to calibration variation. To handle this issue, the simulator
was used as an automatic way to select the best calibration
parameters (the idea was to obtain similar images for both
train and test car), which proved efficient.

We then did open road testing on places never seen in
the training set (video available here https://youtu.
be/arBrxGDXBxQ, the speed is controlled by the human
driver). We noticed that the network was robust to different
light and weather conditions. We also tested our network
successfully on another test car in USA, even if the training
set was only recorded in France.

F. Fine tuning on test track on real car

To test the impact of the fine tuning on the generalization,
the performance of the finetuned models is evaluated on our

https://youtu.be/y8yJQ0jGnco
https://youtu.be/arBrxGDXBxQ
https://youtu.be/arBrxGDXBxQ


simulator. Even with a high proportion of images coming
from the test track (90%), the finetuned network still has
relevant performance on the general validation: about twice
more recoveries than the regular one, but still 20 times less
than the straight baseline.

The fine tuning is more sensitive to light condition than
the generalization network so finetuning data was recorded
at different times of the day and under different weather
conditions to ensure a robust behavior. We can explain this
huge sensibility to light condition by the fact that the initial
dataset contains lot of different light or weather conditions.

Finally the finetuned network is capable of running more
than 50 laps without any human recovery and under various
lightning and weather conditions. A video demonstrating the
final performance of the car in CES 2018 at Las Vegas is at-
tached to this article or available online https://youtu.
be/wqXR71qVZk4. Note that for this demonstration, the
speed of the car is controlled by another imitation learning
network.

G. Visualization of the features detected by the network

Visual backpropagation [17] is useful to have a better idea
qualitatively of how the system is taking steering decisions.
Figure 7 shows some examples of this visualization. We
can see that the network learned to detect road markers,
borders of the road and even working cones (for the finetuned
network) with only the steering angle as training signal.

(a) With markings (b) Without markings

(c) With traffic cones

Fig. 7: Samples of visualization on input images

V. CONCLUSION

We have presented an end-to-end network which takes
as input a fisheye camera image to predict the steering
angle. Taking advantage of the large field of view, a specific
label augmentation procedure is designed, relying on camera
model to generate realistic images for lateral control failure
cases. These images are labeled using a lateral control law
to get an accurate correction label. This way, failure cases
are generated more robustly than what is currently used in
the state of the art.

This generation is combined with a vehicle model to build
a realistic simulator using real-world videos, which is then
used to predict the car behavior with the control in the
loop. This is opposed to pure offline approaches where the
feedback from the prediction is not integrated. We use our
simulator to estimate the percentage of autonomy based on

frequency of recovery required by a large deviation from
the desired trajectory. Using this metric, we define relevant
data selection, label augmentation and bagging process. We
also show in our network-in-the-loop realistic simulator that
our trained end-to-end CNN is capable of more than 99%
autonomy on urban roads. We also validate this qualitatively
on a real car, both on open road and on a test track with
difficult use cases such as sharp turns or working zone areas.

In future work, better performance could be achieved by
improving the neural network architecture (particularly using
batch normalization [18] and skip connections [19]). Another
interesting extension would be to handle obstacle avoidance,
either by investigating in mediated perception techniques,
using conditional networks [12] or adding a temporal aspect
to the prediction.

ACKNOWLEDGMENT

The authors would like to thank: Etienne Perot for launch-
ing this whole project, the Valeo US team for the support,
Thunderhills, Mortefontaine and Amiens test track staff for
their support in building the different tracks.

REFERENCES

[1] E. Perot, M. Jaritz, M. Toromanoff, and R. D. Charette, “End-to-End
Driving in a Realistic Racing Game with Deep Reinforcement Learn-
ing,” in IEEE Computer Vision and Pattern Recognition Workshops,
2017.

[2] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to Real Reinforcement
Learning for Autonomous Driving,” Proceedings of the British Ma-
chine Vision Conference (BMVC), 2017.

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative
Adversarial Nets,” NIPS, 2014.

[4] M. Bojarski, D. D. Testa, D. Dworakowski, et al., “End to End
Learning for Self-Driving Cars,” ArXiv preprint, 2016.

[5] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” NIPS, 1989.

[6] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end Learning of Driving
Models from Large-scale Video Datasets,” CVPR, 2017.

[7] H. M. Eraqi, M. N. Moustafa, and J. Honer, “End-to-End Deep
Learning for Steering Autonomous Vehicles Considering Temporal
Dependencies,” NIPS, 2017.

[8] L. Chi and Y. Mu, “Deep Steering: Learning End-to-End Driving
Model from Spatial and Temporal Visual Cues,” ArXiv preprint, 2017.

[9] “Udacity challenge and dataset.” [Online]. Available: https://tinyurl.
com/yangl4qj

[10] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neu-
ral Computation, 1997.

[11] C. Hubschneider, A. Bauer, M. Weber, and J. M. Zöllner, “Adding
Navigation to the Equation: Turning Decisions for End-to-End Vehicle
Control,” in IEEE International Conference on Intelligent Transporta-
tion, 2017.

[12] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in Interna-
tional Conference on Robotics and Automation (ICRA), 2018.

[13] Z. Yang, Y. Zhang, J. Yu, J. Cai, and J. Luo, “End-to-end Multi-
Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual
Perceptions,” ArXiv preprint, 2018.

[14] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun,
“Autonomous automobile trajectory tracking for off-road driving:
Controller design, experimental validation and racing,” in American
Control Conference, 2007.

[15] J. M. Snider, “Automatic Steering Methods for Autonomous Automo-
bile Path Tracking,” 2009.

[16] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in
IEEE Intelligent Vehicles Symposium (IV), 2015.

[17] M. Bojarski, A. Choromanska, K. Choromanski, et al., “VisualBack-
Prop: efficient visualization of CNNs,” ArXiv preprint, 2016.

https://youtu.be/wqXR71qVZk4
https://youtu.be/wqXR71qVZk4
https://tinyurl.com/yangl4qj
https://tinyurl.com/yangl4qj


[18] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” Proceedings
of The 32nd International Conference on Machine Learning, 2015.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” CVPR, 2016.


	I Introduction
	II Experimental setup
	II-A Target cars
	II-B Target scenarios and datasets
	II-B.1 Open road
	II-B.2 Test track

	II-C Neural Network architecture

	III Method
	III-A Label augmentation
	III-A.1 Using fisheye data
	III-A.2 Label augmentation range
	III-A.3 Corrected label

	III-B Our simulator
	III-C Data selection
	III-D Fine tuning on test track

	IV Results
	IV-A Building the test sequences for the simulator
	IV-B Results of different data selection
	IV-C Bagging of different networks
	IV-D Tests on Grand Theft Auto (GTA) as simulator
	IV-E Open road results on real car
	IV-F Fine tuning on test track on real car
	IV-G Visualization of the features detected by the network

	V Conclusion
	References

