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Abstract

This paper introduces an indoor topological localization algorithm that uses vision and Wi-Fi signals. Its main
contribution is a novel way of merging data from these sensors. The designed system does not require to know the
building plan or the positions of the Wi-Fi Access Points. By making Wi-Fi signature suited to the FABMAP algorithm, this
work develops an early-fusion framework that solves global localization and kidnapped robot problems. The resulting
algorithm has been tested and compared to FABMAP visual localization, over data acquired by a Pepper robot in
three different environments: an office building, a middle school and a private apartment. Numerous runs of different
robots have been realized through several months for a total covered distance of 6.4km. Constraints were applied
during acquisitions to make the experiments fitted to real use cases of Pepper robots. Without any tuning, our early-
fusion outperforms the performances of visual localization in all testing situations and with a significant margin in
environments where vision faces problems such as moving objects or perceptual aliasing. In such conditions, 90.6% of
estimated localizations are less than 5m away from ground truth with our early-fusion framework compared to 77.6%
with visual localization. Furthermore, compared with other classical fusion strategies, the early-fusion produces the
best localization results since in all tested situations, it improves visual localization results without damaging them

where Wi-Fi signals carry little information.
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1 INTRODUCTION
1.1  Problem statement

This paper addresses the problem of indoor localization
for mobile service robotics. The current market trend
consists in a mass deployment of affordable mobile robots
interacting with humans. This raises the need for low-cost
solutions enabling those robots to map their environment,
and constantly know where they are when they move in it.
Numerous projects have been proposed to solve the problem
of localization. However, most of these solutions are based
on the use of expensive sensors, such as laser range finders,
and are designed for specific platforms (Kummerle et al.
2009).

The need for low-cost localization solutions has focused
some research on the use of visual sensors. One
investigation field aims attention at solving the problem
of place recognition by using visual appearance (Ulrich
and Nourbakhsh 2000; Angeli et al. 2008; Siinderhauf and
Protzel 2011; Lowry et al. 2014; Lynen et al. 2014). Such
algorithms try to associate query images to already mapped
places, represented by their visual appearance. Lowry et al.
(2016) presents a comprehensive survey of appearance-based
approaches.

Our work is built upon the Fast Appearance-Based
Mapping algorithm (FABMAP), introduced in Cummins and
Newman (2008), that uses visual appearance to detect loop
closures. This algorithm achieves robust localization with
a low rate of false loop closure detection and can manage

big maps by employing an inverted-index (Cummins and
Newman 2011).

However, place recognition algorithms using visual
appearance have to face the well-known problem of
perceptual aliasing. Perceptual aliasing happens when
two different locations share similar visual appearances
(see example on Figure 1). This problem is inherent in
repetitive environments. A solution is the use of a multi-
sensors localization for disambiguating such situations.

For example, using Wi-Fi helps to disambiguate cases
where several locations have similar visual appearances.
For example, corridors on opposite sides of a building, or
at different floors, have different Wi-Fi signatures but can
share comparable appearances. Recent work has introduced
a way of including Wi-Fi data in the FABMAP algorithm
(Wietrzykowski et al. 2017), but it does not benefit from
advantages of both sensors since it only considers Wi-Fi
signals.
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Figure 1. Perceptual aliasing. Two distant locations in a
building share similar visual appearances. However the
perceived Wi-Fi signatures in these locations are different
enough to distinguish them.

In this paper, a novel way of merging visual and Wi-Fi data
is introduced in order to solve the global localization and the
kidnapped robot problems.

1.2 Use case and social robots

Our novel merging scheme has been tested on Pepper robots,
visible on Figure 2. Pepper is a social robot designed by
SoftBank Robotics. It can be found mainly in Japanese
shops, where it holds receptionist or demonstrator functions.
One of Pepper’s key strengths directly comes from the
interaction it has with users. These interactions are reinforced
and simplified thanks to the human behaviours of the robot.
For this reason, practical uses of Pepper result in special
constraints taken into consideration in this work.

First, the localization process must not hinder human-
robot interaction. As such, it cannot take control of the joints
of the robot, for example to make the robot look away from
the human it is interacting with. Second, some Pepper robots
are deployed in environments with little or no internet access.
This implies that the localization function must be able to
run, at a reasonable framerate, with the - limited - robot
computing power.

&

Figure 2. Pepper robot: designed for making its interaction with
human being as natural and intuitive as possible. It has been
first presented in Lafaye et al. (2014).

A challenging use case comes from the initialization of
the robot pose in its environment. When a Pepper robot
is switched on to start its work day, it has to immediately
localize itself without any help. This known problem is
commonly called the global localization problem. It happens
when the robot has no information about its previous pose. A
very similar issue is often referred to as the kidnapped robot
problem. This problem corresponds to situations where the
robot has a false prior on its pose. Both problems are very
similar, and methods solving global localization problem can
be adapted to solve the other. Our work aims at solving these
problems in indoor situations that are typically the operation
environments of Pepper robots.

1.3 Related Work

In recent years, several indoor localization algorithms based
on Wi-Fi sensors have been introduced (Howard et al. 2003;
Olivera et al. 2006; Rohrig and Kiinemund 2007; Biswas and
Veloso 2010; Huang et al. 2011; Boonsriwai and Apavatjrut
2013; Jirku et al. 2016). This popularity can be explained by
two reasons. First, the Wi-Fi coverage in urban environment
is dense enough for being used in localization task. Second,
it is easy to equip mobile robots with Wi-Fi sensors.

Because the Wi-Fi localization error is bounded (Olivera
et al. 2006), some algorithms choose to fuse Wi-Fi with other
sensors (Aparicio et al. 2008; Mirowski et al. 2013; Ocafia
et al. 2005). Visual and Wi-Fi localizations are particularly
complementary. Even if Wi-Fi localization is less accurate,
(Liu et al. 2012), it does not suffer from perceptual aliasing,
visually dynamic or repetitive environments. A lot of
strategies take advantage of this synergy and use visual and
Wi-Fi sensors to create a low-cost localization.

Most of work focusing on solving the localization problem
from these sensors uses particle filters for fusion as in
Schwiegelshohn et al. (2013); Quigley et al. (2010); Liu
et al. (2017). However, the hypothesis converge if there is
enough motion. Other approaches are sequential, and usually
Wi-Fi guided. They define a set of possible locations from
Wi-Fi data, and perform visual localization over it (Ruiz-
Ruiz et al. 2011; Werner et al. 2011; Nowicki 2014; Jiang and
Yin 2015). Finally, some methods consist in choosing which
sensor is the most reliable for current estimation (Biswas and
Veloso 2013). Yet, these two last approaches are both likely
to suffer from one misled sensor.

1.4 Contribution

Our main contribution is a novel way of merging Wi-Fi
and vision for localization tasks. We propose an early-fusion
process for combining visual and Wi-Fi data that takes the
same inputs as the classical FABMAP. In comparison with
related work, our approach looks for a compromise on the
current estimation by considering data from both sensors
together.

The core of our algorithm was first presented in
Nowakowski et al. (2017). In this paper, our method
deeper considers the Wi-Fi signal. Experiments from
Nowakowski et al. (2017) are increased with new data
making the results presented in this paper more reliable.
New tests are specifically realized in multiple environments
to evaluate the generality of our solution.
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1.5 Paper organization

To introduce our localization solution using Wi-Fi and
vision, the FABMAP algorithm is first briefly presented in
section 2. The readers familiar with FABMAP can start with
section 3 that explains how Wi-Fi data is made compatible
with FABMAP formalism. Our early-fusion process is
then introduced in section 4 with other merging strategies
for comparison. Finally, our experimental acquisitions and
localization results are presented and discussed in section 5.

2 Fast Apperance-Based Mapping

In Cummins and Newman (2008, 2011), the authors
introduce FABMAP, for Fast Appearance-Based Mapping,
a localization algorithm based on the visual appearance.
FABMAP discretizes the environment into a succession of
topological nodes. Each node constitutes a location L;, and
is associated with one or several visual observations. When
processing a query image, FABMAP uses the results of an
offline learning stage. This learning is achieved before the
map creation and the localization phase over external data.
Given a query image, the goal of FABMAP is to compute
the following value for each place L; in a topological map:
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where Z, is the '™ observation and Z! is the set of

all observations, up to <. Three terms can be identified
in (1): the likelihood p(Zy|L;, Z¥~1), the normalization
term p(Zx|Z%~1), and p(L;|Z*~1) that can be considered
as a prior knowledge on the current pose because the
approach assumes independence between current pose and
past observations. Note that in our work, this last term is not
used because our intention is to solve the global localization
problem.

The three next sub-sections respectively introduce the
computations of the observation Zj, the likelihood and the
normalization term.

2.1

The first step of FABMAP is to transform a query image into
a compact image descriptor that is suited to the localization
context. This compact descriptor is called observation vector,
or visual appearance, and is noted Z in (1). To do this,
FABMAP uses the bag-of-words approach introduced in
computer vision in Sivic and Zisserman (2003). Keypoints
are extracted in the image, and their descriptors are then
associated with words of a vocabulary. In FABMAP, the
observation Z indicates which words of the vocabulary are
present on the query image.

For a vocabulary of N words, Z thus contains N
binary values indicating the presence or absence of the
corresponding word in the query.

The vocabulary used comes from an offline learning. It is
usually built thanks to a clustering method like the k-means
performed over a lot of keypoints descriptors extracted from
learning images. Learning images can be chosen in databases
according to the operating environment of the algorithm
(indoor, outdoor, etc.).

Visual Appearance Description

2.2 Observation Likelihood

The second step constitutes the core of the algorithm and
computes the likelihood term p(Zy|L;, Z¥~1) conditioned
on the location. This term is simplified into p(Z|L;)
in Cummins and Newman (2008), assuming independence
between current pose and past observations. Approaches
using the bag-of-words framework can compute similarity
scores between queries and references thanks to methods like
the Term Frequency - Inverse Document Frequency (Salton
and Buckley 1988), or hierarchical vocabularies (Nister and
Stewenius 2006). The main contribution of FABMAP is the
use of a Chow Liu tree, (Chow and Liu 1968), that captures
correlations between the different words of the vocabulary.
This approach is motivated by the fact that certain visual
words are often detected on specific objects and thus, tend
to co-occur. Generally, these correlations are learnt offline,
with the database used during the vocabulary creation.

Experiences realized in Cummins and Newman (2008)
show that learning these correlations helps to avoid false
associations due to perceptual aliasing. It also helps to
achieve correct associations between images, even if they
share few words in common.

2.3 Normalization

The normalization step allows to detect unknown locations.
In Cummins and Newman (2008), the authors split
p(Zx|Z*~1) into two sums, one representing the visited
locations M, the other the unknown world M:

p(Zk|Zk_1) = Z p(Zk|Lm)p(Lm|Zk_1)
meM
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The second summation cannot be evaluated directly. The
authors of FABMAP propose to approximate (2) by:
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where, p(Lpew|Z%~1) corresponds to the probability of
being in a new location, and is a user-specified input of
the algorithm (set to 0.9 in Cummins and Newman (2008)).
The second sum of equation (3) consists in sampling an
observation Z to create a place model associated with
unknown location. The sampling of Z is realized from
training set of ns images.

In addition to the vocabulary, the Chow Liu tree and the
ng samples, the authors of Cummins and Newman (2008) list
some user-specified inputs. In our work, these parameters are
set to the values specified in Cummins and Newman (2008).
Figure 3 summarizes the successive steps of the algorithm.

3 Including Wi-Fi data in FABMAP

In the related literature (Biswas and Veloso 2010; Liu et al.
2012; He and Chan 2016), a Wi-Fi signature - sometimes
referred to as a fingerprint - consists of a list of visible
Access Points (APs), each one being characterized by its
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Figure 3. Inputs of each steps of the FABMAP algorithm.

MAC address and its signal strength (Received Signal
Strength Indication - RSSI). Most of Wi-Fi localization
algorithms collect Wi-Fi signatures during an exploration
stage and then generate a map modeling the distribution
of Wi-Fi signals in the environment. Such approaches have
the advantage of not requiring to know the positions of the
APs in the environment. These strategies particularly suit
the topological localization of FABMAP once they are made
compatible with it (Wietrzykowski et al. 2017; Nowakowski
et al. 2017). This section introduces how our work integrates
Wi-Fi information into FABMAP, following the steps of
Figure 3.

3.1

The first step of visual FABMAP consists in turning a query
image into a vector of binary values: the visual appearance.
This vector is built thanks to a vocabulary of visual words. To
do the same thing with Wi-Fi signatures, a correct definition
of what is a Wi-Fi word is needed.

In previous work (Nowakowski et al. 2017), each MAC
address characterizes one Wi-Fi word. In contrast with
classical visual vocabulary, Wi-Fi vocabulary can therefore
only be built online or after an exploration phase. Indeed, it
is useless to define a global and complete Wi-Fi vocabulary
since it is not possible to know the APs a robot is
going to encounter in an environment before exploring it.
After an exploration phase, the encountered MAC addresses
constitute the vocabulary. The values of Wi-Fi observation
vector ZWi-Fi indicate which known APs are visible in
a Wi-Fi signature. However, this definition does not take
advantage of the information carried by the RSSI.

In Wietrzykowski et al. (2017), the authors dis-
cretize the Wi-Fi signal strength over 10 bits in range
| — 110dBm, —10dBm]. Each bit is associated with a
threshold and is set to 1 if the perceived signal strength
exceeds this threshold. Consequently, the Wi-Fi signal iden-
tified by a MAC address is described by 10 words in the
observation vector.

That last method can be seen as an incremental
representation. Even if such representation is expected to
manage small temporal variations of RSSI, it is possible
that the strongest correlations learnt between words of the
vocabulary come from Wi-Fi words associated with the same
APs. Our work thus introduces another technique that we
call the exclusive representation. A signal coming from a
MAC address is still described by multiple words, but only
one word is set to 1 following its RSSI. A range for usable
RSSI is defined and split into multiple b bins. Each bin is
associated with one binary value. When the perceived signal
strentgh is between the upper and lower limits of a bin, its

Defining a Wi-Fi vocabulary

value is set to one. Otherwise it is set to zero. Thus, it is
possible to compute a vector of b words for each perceived
signal in a Wi-Fi signature. A comparison of the incremental
and exclusive representations is shown on Figure 4 for a
Wi-Fi signal identified by a MAC address and described by
b = 5 Wi-Fi words.

RSSI
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Figure 4. Example of Wi-Fi signal perceived from an AP being
encoded over b = 5 words with the exclusive (a) and the
incremental (b) methods.

With both approaches, ZWi—Fi is the ordered concatena-
tion of the vectors describing the signals of all known APs in
the current signature. Each unperceived AP of the vocabulary
in current signature is associated with a vector full of zeros.
So with Ky known MAC addresses, a Wi-Fi signature is
transformed into an observation vector Zyyj_g; of b x Kw
binary values.

At a given location, Wi-Fi signal strength varies
significantly. To make their inputs more reliable, most
Wi-Fi localization solutions stay motionless for a while, and
compute mean and standard deviation of the RSSI coming
from each AP (Biswas and Veloso 2010; Jirku et al. 2016).
This approach is not possible in our use case because of
Pepper’s motion behaviours. Therefore, the issue of how
many words to use for encoding Wi-Fi intensity arises
without the possibility of averaging. If the use of a lot of
Wi-Fi words is expected to increase the accuracy, a too
precise representation can mislead our system. This issue is
investigated in 5.8.

3.2 Tree Structure

Previous sub-section explained that Wi-Fi vocabulary can
only be built and completed online or after an exploration
phase. It is thus possible to build a Chow Liu tree that
catches correlations between Wi-Fi words from the collected
Wi-Fi signatures. However, in order to avoid the learning
of redundant correlations, it is necessary to make sure
that observation vectors come from different places. In our
system, spatial difference is ensured thanks to odometry data
and temporal difference is ensured by timestamps.

3.3 Normalization and virtual Wi-Fi locations

In the visual world, sampling an observation for normaliza-
tion is easy. To do this, training images needed during the
offline learning and coming from other environments are
used. In the Wi-Fi world, employing this method is not so
simple. One Wi-Fi vocabulary is specific to one environment.
For this reason, using real Wi-Fi signatures collected in
training environments does not make a lot of sense since
the computed observation vectors would only be composed
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of zeros. A solution is to simulate virtual Wi-Fi signatures
according to the collected data.

Multiple variations in Wi-Fi signatures can be identified
for unknown locations considering the propagation of Wi-Fi
signals. An unknown location can:

e share the same Wi-Fi signature as a mapped place,
e have unknown APs in its Wi-Fi signature,
e bring up new combinations of known APs.

Virtual Wi-Fi signatures are simulated considering these
changes.

In our measurements, the number of APs in a Wi-Fi
signature follows a normal distribution for a specific
environment. The mean x4 and the standard deviation o on the
number of APs perceived in the Wi-Fi signatures collected
during the exploration are thus identified. To randomly
generate a virtual Wi-Fi signature, our method first selects
a number of perceived APs following the normal distribution
N (p,0). Each of these simulated APs is then randomly
associated with a known or unknown MAC address and an
RSSI in the usable range of strength defined (in our case
| = 90dBm,0dBm)).

With this formalism, FABMAP localization results based
on Wi-Fi data can be computed. However, as shown in
section 5, using Wi-Fi data alone shows poorer accuracy than
visual-based localization. Next section explains how to take
advantage of both visual and Wi-Fi sensors.

4 Merging Visual and Wi-Fi data

This section introduces various fusion strategies, and among
them, our early-fusion process. To our knowledge, this
approach has never been studied for solving the global
localization problem using Wi-Fi and visual data. Our
methodology is shown on Figure 5. The following sub-
sections present more classical ways of merging vision and
Wi-Fi, discuss the interest of the early-fusion and our choices
concerning the inputs of this algorithm.

4.1

In multi-sensors system, sequential fusions try to take
advantage of the different levels of accuracy of the different
sensors. Two methodologies can be identified when using
sequential fusion with Wi-Fi and visual data:

Sequential fusion

1. Wi-Fi-guided fusion, in which a visual localization
is realized over possible locations determined from
Wi-Fi data;

2. Wi-Fi check fusion, where the result from visual
localization must be confirmed by Wi-Fi data.

These approaches use the fact that Wi-Fi localization is
less accurate than the visual one, but never produces aberrant
results. However, FABMAP normalization style enables the
algorithm to detect loop closures with the assumption that no
one has been missed. In practice, FABMAP detects at most
one loop-closure for each query. However, in order to make
the presented sequential fusions work, Wi-Fi localization has
to furnish a set of several possible locations. Work presented
in Stumm et al. (2013) tackles this issue by introducing
another normalization approach. The same technique is used
in our evaluated sequential merging strategies.

4.2 Late-fusion and Early-fusion

An intuitive way of merging localization results coming from
multiple sensors can be called the late-fusion. Each sensor s
provides a probability p,(L;|Z¥) of being in a location L;
knowing its observations Z¥. For a multi-sensor platform
composed of two sensors s and sz, the result p;; from the
late-fusion can be written as:

% Psq (Lz|Z§1) Pss (Ll‘ng)
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Where o ensures that Y, pis(Ls| ZF ) = 1. Focusing on
the global localization problem and considering that 7,
locations have been mapped, plus one location associated

with the unknown world, note that for every i, p(L;) =
1

ny+1°
With the late fusion, each localizer gives a result according

to the perceptual area of its sensor. Therefore, a sensor misled
by perceptual aliasing can clearly pervert the system. In this
work, we propose to merge the data before the steps of
likelihood computation and normalization. We thus realize
an early-fusion. The output probabilities of the algorithm are
noted p ¢ (L;|Z*). The idea is to concatenate the observation
vectors obtained from visual and Wi-Fi sensors as presented
in Figure 5. This resulting observation vector then becomes
the query for a single localization algorithm. The early-
fusion asset is the computation of a compromise between the
different sensors.

The overall process of early-fusion thus corresponds
to the classical fabmap using as input the concatenation
of visual and Wi-Fi appearance vectors. Computing
pes(Li|Z¥) is done in the same way as described in
subsections 2.2 and 2.3. The learning of correlations
between vocabulary words driving the computation of
likelihood and normalization terms is presented in the
following subsection.

4.3 Which correlations to learn for
Early-fusion?

When merging Wi-Fi and visual data by early-fusion, the
question of which correlations to learn remains. We choose
to split the correlations learning. Instead of learning one
tree, two trees capture words that respectively co-occur in
the visual vocabulary and in the Wi-Fi vocabulary. Both
trees are passed together as a single data structure to the
localization algorithm. This split learning can be explained
by two reasons:

1. First, learning new correlations between all Wi-Fi and
visual words is not obvious. For instance, to learn
new visual correlations from nodes collected during
exploration, all visual words of the vocabulary must
have been seen at least once during the exploration.
In practice, it is not possible to ensure that this
assumption is verified.

2. Second, the normalization step encourages this choice.
Indeed the visual and Wi-Fi unknown world is too
difficult to simulate whereas using split learning
allows to simply concatenate unknown visual and
Wi-Fi samples.
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Figure 5. Early-fusion framework, using visual and Wi-Fi data.

Even if the correlations learning is split, section 5 shows
that early and late fusions generate different results. Both
fusions are also compared to sequential fusions (4.1) that are
more classical Wi-Fi and vision merging styles.

5 Evaluation
5.1 Experimental conditions

Our algorithm was evaluated on data acquired by several
Pepper robots. Each robot used is equipped with the
same camera model and the same Wi-Fi device. In these
conditions, the differences in localization performances
are not significant from one robot to another. Acquisitions
were done by driving a Pepper thanks to a remote control.
During the acquisitions, the robot autonomously acquired
images every 2s, and Wi-Fi signatures every 10s, while
moving at an average speed of 0.35 m/s. Diverse constraints
came from the need of a visually natural localization (1.2).
For instance, blurry images could result from the fact that
we did not want the robot to stop for image acquisitions.
Moreover, motion behaviours of the robot were kept. When
navigating, Pepper looks in the direction of its motion. So
in straight lines, images were not taken in discriminative
perpendicular directions (left or right), but in the direction of
movement. The attached video illustrates the data acquisition
and localization process.

In order to see the performances of our system,
multiple environments were used in this paper. During
our acquisitions, the environments were not specifically
equipped and the tested localization algorithms only used
the existing visual and Wi-Fi landmarks. Thus, data has been
collected in:

e the open-spaces of an office building on two different
floors (5.4),

e corridors and classrooms of a junior high school
spread over three different floors (5.5),

o the different rooms of a private appartment (5.6).

Each of these environments has some specific aspects.
However, because Pepper is intended to be handled by non-
expert users, the same acquisition scheme was kept in all
these situations.

The paths we ran constitute a set of 10120 images and
6110 Wi-Fi signatures. The total covered distance is 6.4km
long. We also paid attention to the diversity and reality of
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our acquisition scenarios: occlusions, dynamic environment,
realistic velocity, user interactions, blur, various times of day,
etc.

Finally, the visual vocabulary used was learnt from 3000
images of indoor scenes, extracted from database presented
in Quattoni and Torralba (2009). To satisfy the real-time
constraint, FAST keypoints detection was used (Rosten and
Drummond 2006; Rosten et al. 2010) combined with the
ORB binary descriptors (Rublee et al. 2011).

5.2 Annotations: initial exploration and
localization

Our formalism defines topological nodes by an associated
couple (image ; Wi-Fi signature). In practice, images were
collected faster than Wi-Fi signatures. Therefore, in order
to associate acquired images with Wi-Fi signatures, two
scenarios were chosen respectively for mapping and
localization phases:

1. During the initial exploration phase, images were
associated with the estimated temporally closest Wi-Fi
signature.

2. During the localization tests, images were linked to the
last Wi-Fi signature acquired.

The positions of all collected images were manually
annotated, resulting in ground truth of node positions. For
each environment, the different acquisitions were split in
two: 40% were used for map creation and 60% constituted
our queries. Each query corresponded to a mapped place.
Global localization was thus realized in an entirely mapped
environment.

Note that all Wi-Fi correlations were learnt over examples
used for the mapping.

5.3 Evaluation metrics

For each query, the highest score computed by the algorithm
was considered as the current localization in the map:

Lipaz = argmax p(Lz|Zk) 5

L;e MUM
To evaluate accuracy, the Euclidean distance between the
annotated positions (z,y) of the query and the associated
mapped place L,,,, was computed. This distance was set to
infinity when the algorithm was mistaken between two floors
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or two environments. This choice is explained by the fact that
these kind of errors are much more problematic in practical
cases. Finally, when L,,,, = L,,, corresponding to unknown
location, our evaluation considered the result as rejected.

Produced results are discussed in the following. We
have used the FABMAP2.0 algorithm (Cummins and
Newman 201 1), and adapted the open source implementation
introduced in Glover et al. (2012) to our use. For the set
of queries, localizations were computed using visual data
only, Wi-Fi data only, and different merging styles: early
and late fusions, and the two sequential fusions presented in
sub-section 4.1.

In order to appraise the global localization performances
of the different merging approaches, results are presented
according to two types of graphs showing:

e the rate of correct localizations: measured as the
cumulative distribution of distances between estimated
localizations and ground truth.

o the rate of misplaced localizations: measured as the
percentage of queries leading to localizations farther
away from ground truth than a given distance.

Thus, both types of graphs show different information.
If the first one gives information on the accuracy of the
algorithms, the second one highlights its errors. On graphs
showing the rate of misplaced localizations, the different
rejection rates can be deduced as:

1 — Rate(error > d = 0) (6)

Appearance-based SLAM algorithms are sometimes
evaluated on a topological best-place correct rate.
Because of the nature of Wi-Fi based localization, which
is not as precise as visual localization, we chose to
evaluate our algorithm on its metrical correctness. It also
makes sense for the kidnapped-robot problem to know
how far, geometrically, the algorithm is from ground
truth. If needed, the presented results can be interpreted
as a topological best-places correct rate. Given the robot
moving speed and data acquisition frequency, references
are placed, in average, every 70cm. As stated earlier,
queries were made only on an already mapped route,
which makes each query at most 35cm away from its
closest reference. Our main performance index is the rate
of correct localizations within Sm, which corresponds to
a match with one of the 10 best topological places.

In the following sub-sections, localization results
in various environment are presented. First, signals
strengths in Wi-Fi signature will not be used. Only the
presence or absence of known access points will be taken
into account. The use of RSSI will be then investigated in
sub-section 5.8.

5.4 Localization in an office building

The environment where most of our acquisitions were
realized is the office floors of SoftBank Robotics Europe
that are mainly composed of open spaces. This facet is
significant considering the propagation of Wi-Fi signals.
In such environments, Wi-Fi signatures are more difficult
to distinguish because there are no obstacles creating
important changes. Possible uses of Pepper in large indoor

F Sm.

Figure 6. Examples of paths run by Pepper robots on a floor of
SoftBank Robotics Europe office building.

environments, like shops, malls or airports, have motivated
this choice of testing conditions.

Acquisitions were realized with different Pepper robots
over several months and at two different floors of the
building. Some examples of paths run by Pepper on a floor
of the office building are shown on Figure 6.

5.4.1 Evaluation of Early-Fusion: In such testing con-
ditions, the use of Wi-Fi data was expected to decrease
the number of aberrant localizations. Indeed, the partic-
ularly dynamic and repetitive aspects of the open-space
make the Access Points be more stable landmarks than
visual keypoints. These expectations were verified by the the
results plotted on Figure 7a and Figure 7b. The localization
based only on Wi-Fi produced 1.3% of aberrant estimations
localized more than 20m away from ground truth whereas
classical visual FABMAP generated 8.3% of deviant local-
izations. However, the visual localization still resulted in
more accurate results with 75.0% of the queries localized
within 2m away from their true positions.

The interest of combining Wi-Fi and vision for
localization tasks is confirmed by the results introduced
in Figures 7a and 7b. All presented merging approaches
show rates of misplaced localizations lower than visual
FABMAP for a distance of 5m. Concerning the rates
of correct localization, our early-fusion framework clearly
outperformed the other algorithms with 90.6% of the
queries localized within 5m away from their true positions,
compared to only 77.6% for vision-only. On Figure 7b, the
rejection rate of sequential fusion with Wi-Fi check allowed
to reduce the rate of errors for this merging style, but the
price to pay was high: in about one in five cases (17.8%, cf.
curve on Figure 7b at d = 0), the robot did not succeed in
estimating a position.
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Figure 7. Localization results computed from the different localization algorithms in the office building of SoftBank Robotics

Europe.

Resulting values from early-fusion and Wi-Fi check
localizations are extracted in Table 1 for comparison with
classical FABMAP.

Correct localization Misplaced localization
rate (%) within rate (%) away from
2m | 5m | 10m | 20m 2m | 5m | 10m | 20m
Vision 75.0 | 77.6 | 78.7 | 80.1 || 13.4 | 10.8 | 9.7 | 83
Wi-Fi 26.0 | 59.7 | 89.8 | 98.0 || 73.3 | 39.6 | 95 | 1.3
Wi-Fi guided | 76.5 | 79.7 | 81.3 | 83.8 || 12.8 | 9.6 | 80 | 55
Wi-Ficheck | 739 | 765 | 775 | 788 || 83 | 5.8 | 47 | 34
Late-Fusion | 77.1 | 80.5 | 82.0 | 83.6 || 134 | 99 | 84 | 69
Early-Fusion | 82.9 | 90.6 | 95.9 | 99.1 || 16.8 | 9.1 39 | 0.6

Table 1. Comparison of classical FABMAP with the presented
localization schemes using Wi-Fi data only, and merging visual
and Wi-Fi data.

Examples of complicated query images taken in the
environment are shown on Figure 8. The images chosen
highlight some typical complex situations. This environment
was particularly dynamic since all acquisitions were realized
on working hours. Between two runs of the robots, furniture
could be moved, people were not systematically sitting at the
same place, and light conditions could significantly evolve.
Furthermore, people were not asked to avoid interaction
with Pepper. Most of acquisitions thus contained occlusions
due to interaction or people walking in front of the camera
(on Figure 8, queries (a) and (b)). In all cases of images
with occlusions, early-fusion produced same or better pose
estimations than the visual localization. Queries (c) and (d)
on Figure 8 indicate some examples of perceptual aliasing.
Query (c) was misled by the presence of a houseplant that
produced a lot of visual keypoints. A similar houseplant on
another floor of the building duped the visual localization.
Early-fusion process did not fall in this error thanks to the
use of Wi-Fi data. A very hard case of perceptual aliasing
can be seen with query (d) of Figure 8. In this case too,

the early-fusion generated an acceptable localization (0.70m
from true position) in comparison with vision (37.87m from
true position).

Therefore, the early-fusion proved to be able of correctly
localize 99.1% of the queries within 20m away from ground
truth with the best accuracy. Furthermore, it is worth to notice
that even if other strategies had higher rejection rates, they
did not succeed in catching up some aberrant mistakes and
early-fusion still had the lowest aberrant error rate.

A good example of unacceptable errors is not directly
visible on Figure 7a and Figure 7b. It corresponds to the
number of queries that were localized at a wrong floor. This
kind of errors can be particularly problematic in strategies
where the result of a global localization is used to load a sub-
map of the environment. Nevertheless, it is still a common
mistake in environments where floors are very visually
similar, like in hotels or conference centers for example. In
this environment, Figure 9 shows the percentages of queries
submitted to this type of error for each tested localization
algorithm.

Once again, the results on Figure 9 highlight the help
provided by the Wi-Fi. The localization algorithm based
only on vision confused more often the different floors.
It was floor mistaken ten times more often than the
localization using Wi-Fi data only. In all fusion schemes,
using Wi-Fi helped to reduce these mistakes. However only
the early-fusion led to a smaller error rate than the Wi-Fi
based localization. These results are particularly interesting
because they seem to indicate that the early-fusion process
results in a better compromise for pose estimation than the
other fusion frameworks.

5.4.2 Long-term localization: All the previous results
demonstrate the interest of merging Wi-Fi and vision for
localizing in this environment. These good performances
encouraged some tests in more challenging situations. So the
long-term robustness of our approach was also tested. These
tests were realized by spacing initial exploration phase and
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Figure 8. Examples of difficult queries collected in the office building of SoftBank Robotics Europe. Each line shows the query
image (left) and the associated location in map computed from classical FABMAP (middle) and early-fusion (right) with the
associated distances between estimated position and ground true (below images). The gray image indicates that visual localization

considers query (b) as an unknown location.
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Figure 9. Percentages of queries localized on a wrong floor of
the building for each localization algorithms.

localization tests seven months apart. The obtained results
plotted on Figures 10a and 10b reveal that visual localization
was more deteriorated than Wi-Fi localization. This can be

easily explained by all the visual transformations that took
place during seven months. These modifications strongly
impacted the results of visual and sequential localizations.
Conversely, the small changes that occurred in Wi-Fi signals,
like new or missing smart-phones mobiles APs, were not
significant enough for degrading the outcomes of Wi-Fi
localization.

Values in Table 2 show that our proposed early-fusion
with Wi-Fi enhanced FABMAP gave the best compromise
between visual and Wi-Fi data.

So far, using Wi-Fi data has shown to be helpful for
pose estimation. But this can be true because of certain
aspects of the environment: its visual repetitiveness, its
dynamic objects, its large dimensions and the fact that
the Wi-Fi coverage was particularly good with numerous
Access Points. To verify the performances of our early-
fusion framework in less favorable conditions, the generality
of our algorithm was tested in two other environments.
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Figure 10. Long-term localization results in the office building of SoftBank Robotics Europe: initial exploration phase and

localization tests are acquired seven months apart.

Correct localization Misplaced localization
rate (%) within rate (%) away from

2m | Sm | 10m | 20m || 2m | 5m | 10m | 20m
Vision 39.2 | 439 | 47.1 | 51.4 || 439 | 39.2 | 36.0 | 31.7
Wi-Fi 242 | 545 | 814 | 957 || 75.7 | 454 | 185 | 42
Wi-Fi guided | 43.2 | 48.6 | 53.2 | 58.7 || 30.7 | 25.3 | 20.7 | 152
Wi-Ficheck | 384 | 429 | 46.1 | 49.1 || 20.0 | 15.5 | 123 | 93
Late-Fusion | 43.6 | 49.9 | 54.3 | 59.7 || 429 | 36.6 | 32.2 | 26.8
Early-Fusion | 57.7 | 75.4 | 87.9 | 97.3 || 422 | 245 | 12.0 | 2.6

Table 2. Comparison of the different localization algorithms
tested: initial exploration phase and localization tests are
acquired seven months apart.

5.5 Localization with bad Wi-Fi coverage

Some tests were realized in a junior high school. This
environment was chosen for several reasons. First, visual
localization produced good estimations there. Then, Wi-Fi
coverage was not optimal. Only 25 Access Points were
visible compared to 544 in the office building of SoftBank
Robotics Europe, for both environments with similar sizes.
876m were run over three different floors with a Pepper robot
in the corridors and classrooms of a junior high school. Some
examples of images acquired in this environment are shown
on Figure 11.

Graphics on Figure 12 show that Wi-Fi localization
performances were much worse than the ones from visual
localization. Nevertheless, the good performances of visual
FABMAP were not really surprising since the offline
learning of our visual vocabulary was realized over the
image database presented in Quattoni and Torralba (2009)
that contains similar images taken in schools. Collected
signatures in this environment were very redundant
and empty in some areas. That damaged the Wi-Fi
localization. In subsection 5.8, performances of Wi-Fi

Figure 11. Examples of images acquired in the junior high
school tested environment.

localization are investigated taking into account the
strengths of perceived signals.

Despite the poor accuracy of Wi-Fi localization, early and
late fusions did not damage the results of visual localization
in a significant way. The rates of correct and misplaced
localization presented on Figure 12a and Figure 12b are very
similar. However, sequential approaches notably deteriorated
the performances of the visual localization. Sequential
localization with Wi-Fi check became very restrictive and
rejects 59.2% of the queries, which strongly degraded its
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Figure 12. Localization results computed from data collected in a junior high school with bad Wi-Fi coverage.

rates of correct localizations (Table 3). For instance, visual
localization correctly localized 94.0% of the queries within
S5m away from their true positions compared to only 40.8%
with the Wi-Fi check sequential approach.

These results highlight the fact that early-fusion from
Wi-Fi and visual data seems to not damage visual
localization in environments where Wi-Fi coverage is not
optimal.

Correct localization Misplaced localization
rate (%) within rate (%) away from
2m | 5m | 10m | 20m || 2m | 5m | 10m | 20m

Vision 91,8 | 94,0 | 94,9 | 94,9 || 3,0 1,0 0 0
Wi-Fi 56 | 12,6 | 249 | 34,1 || 36,5 | 29,5 | 17,1 | 7,8
Wi-Fi guided | 62,3 | 67,1 | 69,8 | 72,4 || 152 | 104 | 7.7 | 4,6
Wi-Ficheck | 39,9 | 40,8 | 40,8 | 40,8 || 1,0 0 0 0
Late-Fusion | 92,0 | 93,7 | 94,7 | 94,7 || 2,9 12 | 02 |02
Early-Fusion | 91,8 | 93,5 | 944 | 944 || 2,9 1,2 | 02 |02

Table 3. Comparison of classical FABMAP with the presented
localization schemes using Wi-Fi data only, and merging visual
and Wi-Fi data for operating in a junior high school.

5.6 Localization in a private apartment

The last environment used during our tests was a private
apartment. Because of its smaller size, testing our algorithm
in such environment was interesting to see if the use Wi-Fi
would damage visual localization.

Acquisitions were realized on a single floor and the
maximal distance between all the recorded poses was 16m
long compared to 76m in the office building and 65m in the
middle school. In these testing conditions, Wi-Fi coverage
was acceptable, with 76 visible Access Points. Several runs
were made and they constituted a total covered distance of
440m. Some of the paths run by the robot are plotted on
Figure 13.

FH 1m.

[

Figure 13. Examples of paths run by Pepper robot in the
different rooms of a private apartment.

Even if this environment was less affected by visual
perceptual aliasing, it contained sources of potential errors
such as strong variations of brightness and a smaller range
of view due to smaller spaces. Some images taken in the
apartment are presented on Figure 14.

Without strong visual perceptual aliasing, the localization
based on vision produced good results as visible in Figure 15.
Thanks to the walls of the different rooms, Wi-Fi signatures
were different and localization based only on Wi-Fi data was
more accurate in this environment than the one achieved in
open-spaces (5.4.1). Some values of Figures 15a and 15b are
extracted in Table 4.

Again, the rate of correct localizations was higher for the
early-fusion process. The early-fusion also helped to reduce
the number of errors. Even if sequential strategy with Wi-Fi
check had smaller error rates (2.0% of misplaced localization
further than 2m of their true positions, against 4.2% for early-
fusion), it rejected 25.0% of the queries.
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Figure 14. Examples of images acquired in the private
apartment tested environment.

Correct localization Misplaced localization
rate (%) within rate (%) away from
2m 4m 6m 8m 2m 4m 6m 8m
Vision 91.8 1929 | 93.6 | 944 || 46 | 35 | 28 | 2.0
Wi-Fi 353 ] 70.6 | 885 | 974 || 647 | 294 | 115 | 2.6
Wi-Fi guided | 81.2 | 82.6 | 84.8 | 86.6 || 64 | 50 | 29 | 1.1
Wi-Ficheck | 73.0 | 73.7 | 744 | 748 || 2.0 | 1.3 | 0.6 | 0.2
Late-Fusion | 929 | 943 | 949 | 956 || 40 | 26 | 20 | 13
Early-Fusion | 94.7 | 96.7 | 97.8 | 982 || 42 | 22 | 1.1 | 0.7

Table 4. Comparison of classical FABMAP with the presented
localization schemes using Wi-Fi data only, and merging visual
and Wi-Fi data for operating in a private apartment.

5.7 Processing time

Finally, the processing time of a query was computed on
Pepper robots. Such robots have a quad-core processor Atom
E3845 with a CPU clock rate of 1.91GHz. The computation
times retrieved were quite similar and around 117ms 4 59ms
for all localization algorithms using visual data. Localization
based only on Wi-Fi processed a query in about 0.31ms £
0.095ms. This difference can be explained by the fact that
generation of the visual appearance descriptor was longer:
99% of the processing time. This aspect encourages the use
of fast keypoints detector and descriptor to operate in real-
time. Note that our implementation was not parallelized.

In these experiments, our system was able to operate in
real-time on board of Pepper robot when acquiring images
every 2s. However, it is still possible to go up to 5 images
per second.

5.8 The application of RSSI

So far, the performances of different localization
strategies have been studied without taking into account
the intensity of the perceived Wi-Fi signals. As mentioned
in sub-section 3.1, the information carried by the RSSI
can be used to improve the accuracy of the localization
algorithms using Wi-Fi data. This is done by implementing
a kind of discretization of the signal strength that fits the
FABMAP formalism. For each known Access Point, the
RSSI is described by multiple binary words. In order to
decide how many words to use for encoding the information
from the RSSI, Wi-Fi localization results were computed
from data collected by multiple Pepper robots in the office
building of SoftBank Robotics Europe. This choice can be
explained by the good Wi-Fi coverage in this environment
with many visible APs, but was still challenging due to the
similarity between the collected signatures (see sub-section
5.4 for more details).

The incremental and exclusive representations presented
in Section 3.1 were investigated. Please note that the
chosen range of usable intensities was in our case
] — 90dBm,0dBm] (as presented in Figure 4) because of
Pepper’s hardware and software limitations. Results for
localization based on Wi-Fi data only were extracted and
some are presented in Table 5. Different numbers of Wi-Fi
words were tested to encode the RSSI. The first line of
Table 5, for b=1 Wi-Fi word, is the same for both
approaches and is used as a reference in the following.

Number of Wi-Fi Correct localization Rejection
words to encode RSSI rate (%) within rate (%)
2m Sm 10m | 20m

1 26.0 | 59.7 | 89.8 | 98.0 0.7

4 313 | 68.1 | 92.6 | 99.1 0.2

26.1 | 61.5 | 904 | 98.9 0.4

3 320 | 709 | 929 | 99.1 | 0.6

27.4 | 675 | 929 | 99.6 0.4

12 29.8 | 689 | 909 | 97.8 1.0

28.0 | 68.8 | 93.3 | 99.5 0.4

16 312 | 70.1 | 91.4 | 975 0.6

26.6 | 66.5 | 91.2 | 99.7 0.1

20 29.7 | 658 | 88.0 | 96.4 1.2

28.0 | 65.7 | 91.5 | 99.7 0.1

Table 5. Weight of the number of Wi-Fi words used to describe
RSSI coming from each Access Point for Wi-Fi localization.
Results computed with exclusive representation are plotted over
gray background and compared to results from the incremental
approach proposed in Wietrzykowski et al. (2017).

The values presented in Table 5 show that taking into
account the information provided by the RSSI improves
the accuracy of Wi-Fi localization. Both approaches
presented in sub-section 3.1 were tested. The most accurate
localization results were obtained when the RSSI was
encoded over 8 words. For instance, with each perceived
strength described by 8 Wi-Fi words, 32.0% of the queries
were localized within 5Sm away from their true positions
for the exclusive representation scheme, compared to 26.0%
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Figure 15. Localization results computed from data collected in a private apartment.

without the use of the RSSI. However, for incremental
and exclusive representations, the localization performances
were not significantly different.

The use of the RSSI is tested in all presented
environments and for all localization strategies using the
Wi-Fi. The obtained results are presented in tables of
performance gains, considering a distance to the ground
truth of d = 5m. These gains are expressed in relation
with the approach that does not take into account the
RSSI; i.e. the method that only considers the presence
or absence of known access points in the signature. The
values of these gains for the exclusive representation are
reported in:

e Table 6 for experiment in SoftBank Robotics
Europe office building;

e Table 7 for experiment in explored junior high
school;

e Table 8 for experiment in tested private appart-
ment;

For the experiments carried out in the office building
(Table 6) and in the junior high school (Table 7), the use
of the RSSI improved the localization performances. The
best results are reached by encoding the Wi-Fi signals
strenghts on b = 8 words. However, this improvement is
especially significant for the localization using only Wi-
Fi data. Approches merging vision and Wi-Fi are less
impacted by the use of RSSI, and some of them get worse
results. For instance, sequential fusion schemes become
more restrictive and the performance gains associated
with the rate of correct localization are negative.

Regarding the localization results obtained in the
apartment, the impact of the RSSI is less favorable
(Table 8). In this environment, the closed rooms create
enough variations in the Wi-Fi signals so that Wi-Fi
localization can be based on a strategy that only
takes into account the presence or absence of known
access points in a signature. The use of the RSSI adds

quantification noise to our system, since Wi-Fi signals
are disrupted by the many obstacles they cross, and the
measured gains do not point to any clear improvement.

Considering the strenghts of perceived Wi-Fi signals
did not significantly improve the performances of the
presented fusion strategies. However, encoding RSSI with
b Wi-Fi words multiplies the size of the Wi-Fi vocabulary
by b. Even if the use of FABMAP2.0 is compatible with
a big vocabulary size, note that the building of Chow Liu
tree is a polynomial time algorithm (Chow and Liu 1968).
Thus, the learning of correlations between Wi-Fi words
would be impacted by the size of the vocabulary.

6 Conclusion

This paper has introduced our early-fusion framework. It is
a novel approach for merging data from visual and Wi-Fi
sensors in order to solve indoor localization tasks for mobile
robots.

The presented method has been tested over data collected
by multiple Pepper robots with acquisitions schemes
following real use cases of these robots. A total distance
of 6.4km has been covered in three different environments:
a building office, a junior high school and a private
apartment. In all of these various situations, early-fusion
has improved the visual localization results. For instance, in
an environment where vision faces different problems such
as perceptual aliasing or dynamic objects, the improvement
of the localization is significant: 90.6% of the queries are
correctly localized within 5Sm from their true positions,
compared with 77.6% with visual localization.

Furthermore, compared with other classical fusion
approaches, the early-fusion has produced the best results
since it improves visual localization results without
significantly damaging them even where Wi-Fi signals
carry little information. The presented results show that
in all our tests, early-fusion is the best compromise when
merging visual and Wi-Fi data for solving global localization
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Gains on correct localization rates Gains on misplaced localization rates
within 5Sm (%), for different values of b away from Sm (%), for different values of b
b=4 b=28 b=12 | b=16 | b=20 b=4 b=38 b=12 | b=16 | b=20
Wi-Fi +8.,6 +11,2 +9,3 +10,4 +6,1 -8,6 -11,2 -9,3 -10,4 -6,1
Wi-Fi guided -0,3 +0,3 +0,1 -2,3 -3,6 +0,3 -2,5 -3,2 -1,3 -1,3
Wi-Fi check +0,4 -3,2 -5,7 -7,6 -11,8 -0,2 -3,0 -4,1 -3,6 -4,3
Late-Fusion -0,1 40,1 -0,7 -0,4 -0,1 +0,2 -0,3 +0,4 +0,3 -0,1
Early-Fusion +0,9 +2,9 +1,1 +1,0 +1,2 -0,9 -3,0 -1,2 -1,2 -1,6

Table 6. Impact of exclusive Wi-Fi discretization in the office of SoftBank Robotics Europe. The performance gains are calculated
for different numbers b of Wi-Fi words encoding the RSSI of the perceived Wi-Fi signals.

Gains on correct localization rates Gains on misplaced localization rates
within 5Sm (%), for different values of b away from Sm (%), for different values of b
b=4 b=28 b=12 | b=16 | b=20 b=4 b=38 b=12 | b=16 | b=20
Wi-Fi +8,9 +15,7 +9.4 +13,0 +11,8 -89 -15,7 -9,4 -13,0 -11,8
Wi-Fi guided +4,1 -6,3 -9,2 -1,2 -13,5 -4,1 +1,4 +3,6 +1,4 +3,6
Wi-Fi check +8.,2 -4,3 -10,0 -4,1 -10,0 +0,5 -0,2 0 0 -0,2
Late-Fusion +0,5 +0,2 0 +0,2 +0,7 -0,2 -0,5 0 -0,2 -0,7
Early-Fusion -0,2 +0,2 -0,5 -0,2 0 0 -0,7 0 -0,2 -0,2

Table 7. Impact of exclusive Wi-Fi discretization in the explored junior high school. The performance gains are calculated for
different numbers b of Wi-Fi words encoding the RSSI of the perceived Wi-Fi signals.

Gains on correct localization rates Gains on misplaced localization rates
within 5Sm (%), for different values of b away from 5Sm (%), for different values of b
b=14 b=38 b=12 | b=16 | b=20 b=14 b=28 b=12 | b=16 | b=20

Wi-Fi +3.1 -2.9 +4.0 -0.2 -1.1 -3.1 +2.9 -4.0 +0.2 -1.1
Wi-Fi guided -6.2 -5.7 +0.2 -8.4 -9.7 -0.4 0 +0.7 +2.9 +3.5
Wi-Fi check -5.5 -1.7 -2.0 -13.0 -16.3 +0.7 +0.2 +0.4 +0.7 0
Late-Fusion +0.7 +0.2 -0.2 +0.4 +0.4 -0.2 0 +0.2 -0.4 0
Early-Fusion +0.7 +0.2 -0.4 +1.1 -0.9 -0.2 0 +0.2 -0.7 +0.7

Table 8. Impact of exclusive Wi-Fi discretization in the tested private apartment. The performance gains are calculated for different
numbers b of Wi-Fi words encoding the RSSI of the perceived Wi-Fi signals.

problem. Some future work could look into qualifying
what are the minimal requirements on the environment
to get good Wi-Fi localization performances.
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