
  

  

Abstract—In this paper, we propose to perform clustering 
and temporal prediction on network-level traffic states of 
large-scale traffic networks. Rather than analyzing dynamics of 
traffic states on individual links, we study overall spatial 
configurations of traffic states in the whole network and 
temporal dynamics of global traffic states. With our analysis, 
we can not only find out typical spatial patterns of global traffic 
states in daily traffic scenes, but also acquire long-term general 
predictions of the spatial patterns, which could be used as prior 
knowledge for modeling temporal behaviors of traffic flows. 
For this purpose, we use a locality preservation constraints 
based non-negative matrix factorization (LPNMF) to obtain a 
low-dimensional representation of network-level traffic states. 
Clustering and temporal prediction are then performed on the 
proposed compact representation. Experiments on realistic 
simulated traffic data are provided to check and illustrate the 
validity of our proposed approach. 

I. INTRODUCTION 
With developments of telecommunication, floating-car data, 
collected directly from vehicular mobile devices, become an 
essential and ever widely available data source for traffic 
data on large networks, including roads/streets for which no 
traffic monitoring infrastructure is available. Acquired 
floating-car data are employed to produce wide-coverage 
information on temporal properties of traffics flows, with 
which we can achieve global analysis of traffic patterns, and 
even predictions of traffic states several future time steps 
ahead. Through the processing of floating-car data, we are 
able to obtain helpful traveling information for vehicles, like 
estimated traveling time. Therefore, traffic data mining has 
become a hot research topic during recent years. 

In previous research progress in traffic data mining, 
traditional methods use parametric models of traffic flows, 
in which a few parameters are calibrated with structural 
assumptions to simulate temporal evolution of traffic states 
[1]. In this kind of methods, cellular automata [2] is a typical 
instrument for powerful simulation and prediction systems. 
Data driven approaches, which adopt machine-learning 
techniques to extract statistical dependencies between data 
[3]-[5], become popular due to increasingly larger volume of 
collected floating-car data. These methods allow to "let the 
data speak for itself" and loosen assumed constraints of the 
proposed traffic dynamic model. Therefore, they are more 
flexible to describe and simulate temporal properties of 
traffic flows. However, in previous progress of both kinds of 
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research, mining temporal patterns of traffic states measured 
on individual links plays a key role in traffic data analysis. 
Variations of traffic states in the whole network are 
described by analyzing temporal dynamics of traffic flows in 
each individual link. Actually, in a typical urban traffic 
scene, traffic states of one local region are highly correlated 
with neighboring areas. Such spatial configurations of traffic 
states can be used as prior knowledge during modeling 
traffic temporal dynamics for the whole network. They are 
useful in improving performances of traffic guidance.  

In this paper, we propose to treat traffic states of all links 
in a large-scale link network as a whole, and to perform data 
mining task, clustering and long-term prediction on the 
network-level traffic states. Through our work, we aim to 
unveil typical spatial patterns and temporal dynamics of 
network-level traffic states, which provides overall 
descriptions traffic states over the whole link network. For 
large-scale urban traffic networks, network-level traffic 
information is often represented in a high-dimensional 
feature space, which makes it difficult to extract 
characteristics of global traffic states. In our work, we firstly 
adopt a geometrical weighted distance to evaluate similarity 
between network-level traffic patterns, which is described in 
section II.A. Then, we use a locality preservative non-
negative matrix factorization method (LPNMF) to project 
network-level traffic state onto a compact representation 
model with much less dimensionality, as described in section 
II.B. In a further step, we perform clustering and temporal 
dynamic prediction on the low-dimensional LPNMF 
projection in section II.C. Finally in sections III and IV, we 
present clustering and prediction results of network-level 
traffic patterns on realistic simulated traffic data, and 
conclude the paper.  

II. GEOMETRICAL SIMILARITY DISTANCE AND LOCALITY 
PRESERVATIVE NON-NEGATIVITY FACTORIZATION 

A. Geometrical weighted similarity measure 
    Network-level traffic states are defined to be spatial 
configurations of link traffic states in a network, which is 
normally represented in n-dimensional vector, with n being 
the number of links in the network. Different network-level 
traffic states represent different global traffic state patterns. 
In a typical network, traffic state of one specific link is 
correlated with its up-stream or down-stream nearest 
neighbors in most cases.  
Let links  and  respectively denote up-stream and 
down-stream nearest neighbors of link i. If link i is 
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congested, its neighboring links  and  are more likely 
to be congested together than those located far from the link 
i and vice-versa. Motivated by this property, we adopt a 
weighted fusion among traffic states in geometrical 
neighborhoods to evaluate similarity between network-level 
traffic states. For the link i, we derive a weighted sum of the 
link-wise difference values with respect to the link i and its 
up-stream and down-stream neighbors, which is defined to 
be local variation  of traffic states around the link i, as 
expressed in Eq.1: 
                    (1) 

 is the link-wise difference between traffic states of the 
corresponding link. , and  are weights attached to 
up-stream neighbors, down-stream neighbors and the link i 
respectively. After that, we map L1 norm of { } into 
[0,1] using a Gaussian kernel in Eq.2 as the final similarity 
measure between network-level traffic states:  

                                                                (2) 

To normalize range of the weighted sum, the sum of all 
weights is required to be 1. The weight  corresponding to 
the link i should be the largest one. Without loss of 
generality, in this paper, we just treat that all neighboring 
share with the same weight value. By performing fusion 
among local neighborhoods, the derived similarity measure 
can be used as an indictor of spatial correlations between 
local neighborhoods. 

B. LPNMF based network-level traffic state representation 
    Dimensionality of network-level traffic state 
representation is directly proportional to the number of links 
in the network. Given a large-scale network that is common 
with application, the resultant high-dimensional traffic state 
representation is difficult to store or use for analysis due to 
curse of dimensionality. To attack this issue, we propose to 
use locality preserving non-negative matrix factorization 
(LPNMF) [6][7] to obtain low-dimensional representation of 
global traffic states. Assuming that p samples of n-
dimensional network-level traffic states are stored as n*p 
matrix , LPNMF factorize  into the non-negative n*s 
matrix  and s*p matrix , which minimizes the 
following objective function: 
                                          (3)                  
The first term is known as Frobenius reconstruction error. In 
this algorithm, each network-level traffic state is actually 
approximated by a linear combination of column vectors in 

, weighted by components of the corresponding column 
vectors in . Therefore,  can be regarded as a group of 
basis for representing global traffic states, while columns of 

 are s-dimensional coordinates of original traffic 
observations with respect to the basis . In the setting of 
NMF, s is much less than the original dimensionality n. 
Therefore,  is a much lower dimensional representation of 
network-level traffic states after factorization. In contrast 

with SVD decomposition, derived manifold space is not 
necessarily orthogonal in NMF. Each data sample takes 
positive coordinates in the low-dimensional projection 
space. The above two properties makes NMF more suitable 
to describe the latent distribution structures, especially when 
overlap exists among different clusters of data samples. In 
the second term of the object function in Eq.3,  is Graph 
Laplacian [8], defined as . In the matrix W, is a 
pair-wise geometrical weighted similarity measure matrix 
between the ith and jth network-level traffic state 
observation. D is a diagonal matrix whose entries are 
column sums of W, defined as Eq.4:  
                                                                        (4) 

By adding the Graph Laplacian based constraint, the 
obtained low-dimensional representation  are calibrated to 
keep similar topological structures as original data set X, 
which means that the similarity measure between the ith and 
jth column  and  reflects similarity of spatial patterns 
between the corresponding original network-level traffic 
state observations. Therefore, the low-dimensional LPNMF 
projection can denote structural information of general 
spatial configurations of traffic states in link networks, 
which makes it a suitable choice for performing predictive 
analysis of temporal dynamics. 

C. Clustering and temporal prediction of network-level 
traffic states 
   According to the non-negativity property inherited from 
classical NMF settings, each component in  is 
proportional to contribution of the corresponding basis to 
represent general appearances of the original network-level 
traffic state observation .  Based on this property, we 
propose to use a simple scheme to determine cluster labels 
of each network-level traffic state observation. For each , 
we examine and assign  to the jth cluster if the jth 
component of  takes the largest value in . Simply as it 
is, we can still find out the intrinsic distributional properties 
of network-level traffic states based on the LPNMF 
factorization method.  
    In our work, we introduce a k-Nearest-Neighbor (k-NN) 
based scheme to model temporal transition of network-level 
traffic states in a non-parametric way. Assuming we have a 
set of historic records of network-level traffic states { } 
(i=1…S, j= 1…T), which record traffic states for S different 
traffic scenes. Each scene contains T time sampling steps. 
We perform LPNMF on this data set.  corresponds to a 

LPNMF based representation of . In a typical application 
of traffic state prediction, we usually have observed a 
sequence of network-level traffic states from the beginning 
time to the t-th time sampling step of one specific day and 
expect to predict how spatial configurations of network-level 
traffic states evolve in the following time until end of the 
day, which is a long term estimation of temporal dynamics 
of overall traffic states in the whole network. To solve this 



  

problem, we firstly project the sequence of currently 
obtained observations { } (j=1…t ) onto low-dimensional 

representations { } (j=1…t ) with the basis  learned 
from historical data set. This procedure could be performed 
using Non-negative Least Squares (NNLS) [9], as illustrated 
in Eq.5.  

                               (5) 

Due to fixed structures of the learned basis M and convexity 
of least square reconstruction, the obtained low-dimensional 
manifold representations { } (j=1…t) have unique 
solutions. After that, we evaluate similarity between the 
obtained sequence { } and the sub-sequences { } 
(i=1…S, j=1..t) obtained from the historical records with the 
same time interval, following Eq.6 and 7: 

                                      (6) 

 

                                           (7) 
                                      

is cosine distance between the LPNMF based 
representations. According to Eq.6, the distance between 
temporal sequences of the low-dimensional representations 
is measured by a weighted sum of differences between the 
low-dimensional representations that are obtained at the 
corresponding time steps. The weight values are decayed 
exponentially as increasing interval values along the time 
axis between the stopping time t and a preceding sampling 
time j, which follows markovian assumption in time-series 
analysis [10]. Traffic states captured at earlier time than the 
current time t have less effecting on predictions of the future 
states. Based on the setting of distance measure, we can find 
the k nearest neighbor and their indices { } (m =1,2…,k) 

of the obtained sequence {  } (j =1…t) in the historic 
records. Finally, predictions of unknown network-level 
traffic states for all following time steps from t+1 to T in the 
specific day are constructed using weighted average of the k 
nearest neighbors, as illustrated in Eq.8.  

                                           (8) 

Through k-NN operation, we aim to search for the first k 
traffic scenes in the link network that have with the most 
similar temporal evolution mode with the currently observed 
data. Due to fixed topological structures of the link network 
and regular patterns of demand and supply of traffic 
resources in daily traffic scenes, it is of high possibility that 
similar preceding temporal dynamics of traffic states leads to 
also similar future temporal behaviors of network-level 
traffic patterns. Therefore, as we can see in Eq.8, the 
contribution of each nearest neighbor is measured according 
to the similarity between historical records and the current 
observed data. Following this intuitive characteristic, k-NN 

based prediction can provide general descriptions of long-
term dynamics of network-level traffic states with only one 
time of parsing in the historic records.  

III. EXPERIMENTAL RESULTS OF CLUSTERING AND 
TEMPORAL DYNAMICS PREDICTION 

A. Metropolis software and IAU-Paris Database 
        

 
                Fig. 1. Traffic network of Paris and suburb regions 
 
   To verify validity of the proposed method in clustering and 
modeling network-level traffic states, we firstly simulate real 
traffic scenes of the large-scale traffic network of Paris and 
its suburb regions using Metropolis [11], in order to generate 
a benchmark traffic database. Metropolis is a planning 
software that is designed to model transportation systems. It 
contains a complete environment to handle dynamic 
simulations of daily traffic in one specific traffic network, 
which allows the user to study impacts of transportation 
management policies in a large-scale urban traffic network 
in a time-dependent manner. The built traffic database is 
composed of 4660 intersections and 13627 links in the 
network shown on Fig. 1. Each simulated traffic scene is 
generated to cover 8 hours of traffic data observations, 
including congestion in morning rush hours. Different traffic 
situations are obtained by adding random events and 
fluctuation in the O-D matrix (Origin-Destination) and 
capacity of network flow. There are totally 108 simulated 
traffic scenarios in our benchmark data set. Each one 
contains 48 time steps, corresponding to 15-minute bins over 
which the network traffic flow are aggregated. To represent 
traffic states, we propose to use traffic index [12] in each 
link at a specific time, as in Eq.9. 

                                                                          (9) 

The denominator is the observed travel time in link  at time 
, the nominator is the free-flow travel time on this link. The 

smaller the traffic index is, the corresponding link is more 
congested. To perform clustering analysis, we concatenate 
all observations of traffic states into a 13627*5184 matrix. 
Each column corresponds to a network-level traffic status 
obtained at each time step, which is a 13627-dimensional 
vector. In the experiment of clustering, the number of 



  

clusters is 3 and 5 respectively. For convenience of 
visualization, we project all the column vectors into 3-
dimensional PCA space to illustrate structures of the 
obtained clusters. For modeling temporal dynamics of 
network-level traffic states, we set the number of LPNMF 
basis to be 30 to keep more information about spatial 
structures of global traffic states. 
           

B. Clustering results of networked-level traffic states 

 
Fig. 2. Three-views diagram of network-level traffic states in 3D PCA space 
 
   We illustrate distributions of network-level traffic states in 
IAU-Paris database in 3D PCA space, as shown in three 
different viewpoints in Fig. 2. As we can see, the data points 
corresponding to the free-flowing network-level states 
concentrate within a small region in the PCA space. 
Compared with them, the data points corresponding to the 
scenes in which congestions occur in certain links are 
distributed rather sparsely and far from the region containing 
free-flowing states. Furthermore, while congestion in the 
link network become severer and severer, variations of data 
points become larger and larger. In fact, spatial 
configurations of network-level traffic states keep to be 
similar with each other if the whole network is almost free-
flowing everywhere. On the contrary, congestion occurred at 
different parts of the network change spatial patterns of 
traffic states in different ways, which introduces large 
variations into distributions of network-level traffic patterns. 
We firstly divide all network-level traffic states in the 
database into three clusters, as we can see in Fig. 3. 
   The cluster labeled by blue legends represents that almost 
all links are free-flowing in the link network. Both red and 
dark green clusters indicate that traffic jam occurs in the 
certain parts of the link network. In Fig. 3, we select spatial 
configurations of network-level traffic states with the 
severest congestion in each cluster, which have the least 
average value of traffic indices among the corresponding 
clusters. They are used here as representative exemplars of 
spatial patterns of traffic states in each cluster. According to 
Fig. 3, in spatial configuration of each exemplar, red color is 
used to label congested links whose traffic indices are less 
than a specified threshold, while green color used for fluid 
links. We can see that the exemplar extracted from the red 
cluster contains much less busy links than the one from dark 
green cluster. It denotes that network-level traffic states in 
the dark green cluster contain severer congestion in the link 
network then the red cluster. Furthermore, as shown in both 
exemplars of the red and dark green clusters, most of 
congested links locate within the central region of the 

network. It implies that most traffic congestion occurs inside 
Paris. Suburb regions are free-flowing most of the time. 
 

 
Fig. 3. Three clusters and exemplars of network-level traffic states 
 

 
         Fig. 4. Division of clusters after increasing the number of cluster 
 

In Fig. 4, we increase the number of clusters from 3 to 5. 
Fig. 5 illustrates exemplars of clusters except the one 
corresponding to the free-flowing state, following the same 
settings in Fig. 3. We also compare structures of the three 
clusters shown in Fig. 3 and the five obtained clusters in 
Fig. 4. The cluster corresponding to network-level traffic 
state with light traffic congestion, labeled by red legends in 
Fig. 3, is further split into two parts that are labeled by pink 
and purple legends respectively in Fig. 4. These two sub-
clusters have elongated shapes oriented to different 
directions in 3D-PCA space, which represents different 
distribution settings of congestion in the network. Exemplars 
of these two clusters illustrate the difference clearer, as 
shown in Fig. 5(a) and 5(b). In the exemplar of the sub-
cluster labeled by pink legends, illustrated in Fig. 5(a), busy 
links tend to be closer to the central region than in the 
exemplar of the sub-cluster labeled by purple legends, as 
shown in Fig. 5(b). Despite of similar degrees of network-
level congestion in both two exemplars, they indicate 



  

different spatial configurations of traffic states in the 
network, which is consistent with the difference of 
orientations of the two elongated sub-clusters. 

 

 
Fig. 5. Exemplars of sub-clusters. (a) and (b) are exemplars of sub-clusters 
labeled by pink and purple legends respectively. (c) and (d) are exemplars 
of sub-clusters labeled by black and light green legends respectively 
 
Similar hierarchical way of splitting can also be observed in 
the dark green cluster in Fig. 3. As we can see in Fig. 4, this 
cluster is split to two sub-clusters labeled light green and 
black legends. Due to large variations of spatial 
configurations of traffic congestions, data points in both of 
two sub-clusters are sparsely distributed. However, these 
two sub-clusters still differ in spatial layout of network-level 
traffic congestion. In Fig. 5(c) and 5(d), we compare the 
exemplars of the two sub-clusters labeled by black and light 
green legends in Fig. 4 respectively. Generally, the exemplar 
in Fig. 5(d) contains more congested links. Furthermore, 
although the central region of the network is highly 
congested in both exemplars, the area to which network-
level traffic congestion extend is more wide in the exemplar 
shown in Fig. 5(d), especially in suburb regions. This 
implies a different setting of traffic scenes during simulation. 

C. Temporal prediction of network-level traffic states 
   We employ repeated random sub-sampling validation in 
our experiment: 88 of the whole 108 simulations of traffic 
scenes in the IAU-Paris database are selected randomly to 
form the historic observation records, and the remaining 20 
are taken to be the testing set. Such random split is repeated 
for 200 times. In each split, in order to evaluate predicting 
accuracy between the estimated network-level traffic state 

 and the corresponding target   at the jth 
time step of the ith traffic scene, we calculate absolute 
difference  between mean of traffic index values in 

 and  as in Eq.10. Larger  means less 
prediction accuracy.  

                    (10) 

For evaluating overall prediction performances for all time 
steps in the testing set, we calculate the average of 

all obtained in the testing data. Final overall evaluation 
result is then averaged over the total 200 iterations. In IAU-
Paris database, there are 48 time steps of traffic observations 
in each simulation of traffic scenes. We choose the first 20 
time steps as the observed sub-sequence of network-level 
traffic states, which covers early hours of each simulation. 
Long-term temporal dynamics of left 28 time steps are used 
to be targets of prediction. We compare the overall 
prediction performances of the proposed method with the 
historical data based prediction that uses average patterns of 
historical network-level traffic states at corresponding time 
steps as prediction results. The historical data based 
prediction is a baseline algorithm, because it doesn't make 
use of any heuristic knowledge about temporal dynamics of 
traffic states. Compared with it, k-NN operation in our 
method can select a group of historical traffic data that are 
more specific to the current traffic scenes. As a result, our 
method is expected to achieve higher accuracy in estimating 
spatial configurations of traffic states. In table 1 and Fig. 6, 
we compare overall prediction performances with different 
settings of the number k of the nearest neighbors. 
 

 
Fig. 6. Overall prediction performances with different settings of k in the 
proposed k-NN based method 
 

TABLE 1. Prediction performances with different settings of k in k-NN 
 

         K Historical data 
based method 

KNN based method 

           3    2.96e-04      1.43e-04 
           5    3.22e-04      1.96e-04 
           7    3.92e-04      2.75e-04 
           9    3.84e-04      2.72e-04 
          11    3.80e-04      3.05e-04 
          13    4.20e-04      3.11e-04 
          15    2.82e-04      1.49e-04 
          17    2.99e-04      1.83e-04 

 
According to table 1, we can find that average differences 
between predicted network-level traffic states and the 
ground truths are rather small. The main reason is that most 
links are free of traffic congestions in IAU-Paris database. 
Both of two methods involved in the comparison depend on 
historical records to reconstruct spatial configurations of 



  

network-level traffic states. Thus, prediction errors that are 
aroused in congestion regions of the link network become 
small. The variations of prediction accuracies with respect to 
both methods are caused by random selection of historical 
data set and testing set. Nevertheless, by comparing 
prediction performances of the k-NN based method with the 
historical data based one, it is obvious that the former 
achieves much better prediction than the latter, which 
confirms our idea that heuristic knowledge of temporal 
dynamic patterns is useful for long-term prediction in traffic 
data analysis. Furthermore, in Fig. 6, we can see that the 
difference of prediction performances between the two 
methods varies only a little by increasing k.  It denotes that 
the top members in the nearest neighboring list play a 
dominant role in estimating the unknown temporal evolution 
patterns. 
 

 
                                               (a) 

 
                                               (b) 

Fig. 7. (a) (b) Comparison of prediction performances on two different 
traffic scenes 
 
Furthermore, Fig. 7 (a) and 7(b) show the subsequences of 
mean traffic indexes obtained from our proposed KNN 
based prediction, the historical data based prediction and 
ground truth in two traffic scenes of the testing data set in 
one iteration of random repeated random sub-sampling. The 
time sampling steps range from 21 to 48.  Using the 
proposed KNN-based method, we can estimate temporal 
dynamic patterns more accurately than the historical data 
based method. Even around the turning point when network-
level traffic states begin to recover from congestion, our 

method can still fit variation mode of traffic states in ground 
truth well, especially in Fig. 7(b). Interestingly, according to 
Fig. 7(a), the largest estimation error occurs during the time 
intervals around the turning point that contains more 
variations of spatial traffic state patterns than any other 
temporal periods. 

IV. CONCLUSIONS 
Our main contribution is to propose locality preservative 

non-negative matrix factorization (LP-NMF) to project high 
dimensional network-level traffic state observations into a 
smooth and compact manifold. Based on the derived low 
dimensional projection, we can describe typical spatial 
patterns and estimate long-term temporal dynamics of 
network-level traffic states more flexibly. Experimental 
results also indicate promising use of network-level traffic 
state modeling as prior knowledge in predicting temporal 
behaviors of global network traffic states. 
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