

End-to-End driving from vision with Deep Imitation Learning and Deep Reinforcement Learning

Marin TOROMANOFF^{1,2}, Emilie WIRBEL¹ & Pr. Fabien MOUTARDE²

¹Valeo Driving Assistance ¹Center for Robotics, MINES ParisTech, PSL Université

Principle of end-to-end driving

ilen

Training+testing dataset = <u>10,000 km</u> (<u>200 hours</u>) of human driving in openroad (highways, urban streets, country roads, etc...) under various weather conditions

TrainingSet = videos with 10 millions images

+ driving-wheel angle

TestSet = videos with 3 millions images

+ driving-wheel angle

Scenario	Urban	Highways	Sharp turns
Image count	100000	70000	15000
Duration (min)	56	39	8

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019 5

End-to-end trained convNet Valeo PSL 🖈

ConvNet output: steering angle Fully-connected laver Fully-connected layer Fully-connected laver 100 neurons 1164 n Flatten Convolutional feature map 64@1x18 3x3 kerne Convolutional feature map 64@3x20 Same ConvNet architecture 3x3 ker Convolutional feature map 48@5x22 as in Nvidia work 5v5 korno Convolutional feature map 36@14x47 5x5 kerne Convolutional feature map 24@31x98 Normalized input plane 3@66x200 ConvNet input: Cylindrical projection of fisheye camera

"ConvNet in-the-loop" with real images

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019 7

End-to-end driving: closed loop evaluation

TABLE V: Autonomy (%) and mean absolute distance (MAD, in cm) according to data distribution and validation scenario, the baseline is just going straight.

Scenario	Urba	n	High	ways	Sharp	o turns
Metric	Aut.	MAD	Aut.	MAD	Aut.	MAD
	(%)	(cm)	(%)	(cm)	(%)	(cm)
Original	99.3	16	98.7	19	73.7	30
Sel. #1	98.9	15	97.7	25	83.7	27
Sel. #2	99.5	16	97.2	24	87.5	28
Oversamp.	98	18	91.8	29	82.5	29
Baseline	8	36	14	41	0	35

TABLE VI: Comparison of performance between individual networks and bagging

Scenario	Urban		Highways		Sharp turn	
Metric	Aut.	MAD	Aut.	MAD	Aut.	MAD
	(%)	(cm)	(%)	(cm)	(%)	(cm)
Weights #1	99.5	16	97.2	24	87.5	28
Weights #2	98.9	15	97.7	25	83.7	27
Weights #3	99.3	16	98.7	19	73.7	30
Weights #4	98.6	18	92	26	85	29
Weights #5	98.4	15	96.4	21	83.7	28
Bagging	99.5	13	98.7	19	87.5	27

End-to-end driving learnt on <u>real</u> data & tested in GTA <u>simulator</u>

Valeo

Valeo

Very good behavior in simulator of convNet learnt ONLY ON REAL DATA \rightarrow Generality/transferability of driving model

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019 9

Real vehicle end-to-end driving (learnt by Imitation)

[Work by Valeo using ConvNet trained by my CIFRE PhD student Marin Toromanoff]

PSL* Demonstration at CES'2018

Barrier Jersey barriers Grass Parking 16 m Cone chicane 100m

The car stops on the barrier

"End to End Vehicle Lateral Control Using a Single Fisheve Camera", Marin Toromanoff, Emilie Wirbel, Frédéric Wilhelm, Camilo Vejarano, Xavier Perrotton et Fabien Moutarde, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018), Madrid, Spain, 1-5 oct. 2018.

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019 11

Then, why research also on Valeo Reinforcement Learning?

- Intermediate conclusion: Imitation Learning works well, but requires lots of real human driving data in most possible driving situations
- Very difficult to collect real driving data covering enough variety of driving configuration
 → need to use driving simulations
 → need to learn without human ground truth

- Policy-based $\pi_{\theta} \approx \pi^*$ optimize a parameterized policy
- Value-based $Q(s, a, \theta) \simeq Q^{\pi^*}(s, a)$ find the optimal (parameterized) Q-value
- > Model-free

Model-based

 $m(s_t, a_t, \theta') \approx s_{t+1}, r_{t+1}$

Summary of main RL algorithm types

Family	Algorithm	On/Off policy	Discrete/continuous output?
Policy		On policy	Both
based	Actor-Critic (A3C)	On policy	Both
Value based	SARSA	On policy	Discrete
	Q-Learning (DQN)	Off-policy	Discrete
Model	MCTS	Off-policy	Discrete
based	iLQG	Off-policy	Continuous

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019 17

[1] S. Levine: CS294 Deep Reinforcement Learning (2017)

Until recently, very few published research, and mostly in racing games:

Asynchronous methods for deep reinforcement learning, V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, ICML'2016.

<u>End-to-End Race Driving with Deep Reinforcement Learning</u>, Maximilian Jaritz, Raoul De Charette, Marin Toromanoff, Etienne Perot, Fawzi Nashashibi, *ICRA 2018 - IEEE International Conference on Robotics and Automation*, Brisbane, Australia, May 2018.

• Up to now, only real driving with RL: "Learning to Drive in a Day" (2018, [1])

- Embed DRL in a real car, and learn « from scratch »
- But VERY SIMPLE CASE: lane keeping along 250m!

• Simulation used before to design architecture and find hyperparameters

[1] A. Kendall et al.: Learning to Drive in a Day (2018)

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019 19

<u>End-to-End Race Driving with Deep Reinforcement Learning</u>, Maximilian Jaritz, Raoul De Charette, Marin Toromanoff, Etienne Perot, Fawzi Nashashibi, *ICRA 2018 - IEEE International Conference on Robotics and Automation*, Brisbane, Australia, May 2018.

RL for Automated Driving: why learn in a simulator?

- RL require huge amount of trial & error, and initial policy = very bad driving!
 ⇒ Learn in simulation (for safety + speed)
- Still few driving simulators adapted for DL and RL, and best ones not totally mature

Simulateur	GTA	DeepDrive.io	AirSim	CARLA[1]	
Flexibilité		++	++	+-+-	
Variété	++			+	
Complexité/Réalisme	++		-	-	
Objets mobiles	++			+	
Vitesse éxecution			+	+	
Multi-agent			777	++	
	→ Choice of CARLA				

[1] A. Dosovitskiy: CARLA: An Open Urban Driving Simulator (2017)

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019 21

CARLA benchmarks

alen

- First benchmark: navigation tasks with 4 possible orders at intersections (Left, Straight, Right, Follow_Lane) and 4 difficulty levels:
 - Straight (never turn at intersection)
 - One Turn
 - Navigation = longer path with at least 2 orders
 - Dynamic Navigation = + pedestrians and cars
 But motrics = only % arrival at dostination!
 - But metrics = only %arrival at destination!

•<u>CARLA challenge (current): idem + respecting</u> traffic lights, and handling lane-change

- Evaluation metrics = Task completion
 - & Distance between infractions
- · Final test on unseen city, and several unseen weathers!
- · Results (and 10.000\$ for winner!) at CVPR'2019 (June 16-17)

- Rainbow [1] = combination of many improvements of DQN [4]
 currently SoA on ATARI benchmark
- IQN [2] = learning with <u>probability distributions</u> rather than just expectation of average

_	Mean	Median	Human Gap	Seeds
DQN	228%	79%	0.334	1
PRIOR.	434%	124%	0.178	1
C51	701%	178%	0.152	1
RAINBOW	1189%	230%	0.144	2
QR-DQN	864%	193%	0.165	3
IQN	1019%	218%	0.141	5

 Ape-X [3] <u>multi-agent</u> version of DQN allowing massively parallel distributed learning
 ⇒ Largely better performance, but typically require
 22 billions of frames (vs. 200 millions)

[1] M. Hessel et al : Rainbow: Combining Improvements in Deep Reinforcement Learning Matteo (2017)

[2] D. Silver et al : Implicit Quantile Networks for Distributional Reinforcement Learning (2018)

[3] B. Horgan et al : Distributed Prioritized Experience Replay (2018)

[4] V. Mnih et al : Human-level control through deep reinforcement learning (2015)

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019 23

- Negative reward = f(distance from center-of-lane)
 + positive reward = g(speed recommanded_value)
 [36 km/h in our initial tests]
- End of episod if collision or too far from lane-center

Preliminary tests on first CARLA benchmark

	Baseline RL (Train Town)	Rainbow-IQN (Train Town)	Baseline RL (Test Town)	Rainbow-IQN segmentation
TASK				(Test Town)
Straight	89%	88%	74%	96%
One Turn	34%	80%	12%	76%
Navigation	14%	68%	3%	52%
Dynamic Nav.	7%	52%	2%	44%

Rainbow-IQN > Rainbow >>> Baseline RL CARLA (but metrics = only %arrival at destination!)

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019 25

/aleo

Example of test result with turns

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019 27

Steel * I PSL * Conclusions & perspectives

- End-to-end driving by <u>Imitation-Learning can work</u> and generalize rather well, but requires human driving data of all representative situations!!
- Deep Reinforcement Learning in CARLA simulator for End-to-end driving → Very encouraging preliminary results
 - Potential improvement of driving smoothness by increasing # of discretization levels for actions
 - Currently in progress: participation to CARLA challenge
 → handling of Traffic Lights (etc...) using a pre-learnt
 input transformation (instead of raw images)
- Future work:
 - transferrability to real-world videos
 - Combination of Imitation-Learning and RL?

QUESTIONS?

[very first test on new CARLA challenge]

CURRENT ORDER : Follow_Lane CURRENT SPEED : 0.00 km/h

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019 29