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End-to-End driving from vision with
Deep Imitation Learning 

and Deep Reinforcement Learning
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Idea of end-to-end driving 

Current architecture for automated driving

vs. HUMAN driving:
turn/accelerate-brake by just looking in front

(“intelligent” visual servoing)
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Driving wheel, 
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or braking
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Principle of 
end-to-end driving 

Imitation Learning or 

Reinforcement Learning
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Imitation Learning:
“copying” human driver

ConvNet input: 
Cylindrical projection 

of fisheye camera
ConvNet output:

steering angle

Fisheye
camera
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Real human driving data

Training+testing dataset = 10,000 km (200 hours)
of human driving in openroad (highways, urban
streets, country roads, etc…) under various
weather conditions

TrainingSet = videos with 10 millions images 
+ driving-wheel angle

TestSet = videos with 3 millions images
+ driving-wheel angle
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End-to-end trained convNet

ConvNet input: 
Cylindrical projection of 

fisheye camera

ConvNet output: steering angle

Same ConvNet architecture 

as in Nvidia work
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Closed-loop “simulator” 
with real images

“ConvNet in-the-loop” with real images
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End-to-end driving:
closed loop evaluation
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End-to-end driving learnt on real
data & tested in GTA simulator

Very good behavior in simulator of convNet learnt ONLY ON 
REAL DATA à Generality/transferability of driving model

End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019     10

Real vehicle end-to-end driving 
(learnt by Imitation)

[Work by Valeo using ConvNet trained by 

my CIFRE PhD student Marin Toromanoff]



End-to-end driving with Imitation-Learning & Deep Reinforcement Learning, Pr F. MOUTARDE, MINES ParisTech, PSL, May2019     11

Demonstration at CES’2018

"End to End Vehicle Lateral Control Using a Single
Fisheye Camera", Marin Toromanoff, Emilie Wirbel,
Frédéric Wilhelm, Camilo Vejarano, Xavier Perrotton
et Fabien Moutarde, 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS 2018), Madrid, Spain, 1-5 oct. 2018.
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Then, why research also on 
Reinforcement Learning?

• Intermediate conclusion: Imitation Learning 
works well, but requires lots of real human 
driving data in most possible driving situations

• Very difficult to collect real driving data covering 
enough variety of driving configuration 
è need to use driving simulations
è need to learn without human ground truth
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Reinforcement Learning (RL)

Deep Reinforcement Learning (DRL) if Deep NeuralNet used as 
model (for policy and/or its “value”): DQN, Actor-Critic A3C

End-to-end driving: policy p searched as ConvNet(front-image)

Goal: find a “policy” at=p(st) that

Maximizes  
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3 families of RL algorithms

• Policy-based
optimize a parameterized policy

• Value-based
find the optimal (parameterized) Q-value

• Model-based 

Model-free
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Value and Q-function

• Value of a policy (from a given state)

• Q-function of a policy

THERE ALWAYS EXISTS A 

DETERMINISTIC OPTIMAL POLICY p*
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Deep Q Network (DQN)

•Q-learning: 

•Optimal policy deduced from optimal Q-value

•DQN [1]: if too many possible states, approximate 
Q as a neural network, and learn Q* using SGD 
with loss from Bellman equation

[1] V. Mnih et al : Human-level control through deep reinforcement learning (2015)
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Summary of main RL 
algorithm types

Family Algorithm

Policy 

based

Value 

based

Model 

based

Discrete/continuous output?

Discrete 

Discrete 

Discrete 

Continuous

Both

BothActor-Critic
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How to choose 
RL algorithm? 

[1] S. Levine: CS294 Deep Reinforcement Learning (2017)
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RL for automated driving

•Until recently, very few published research, and 
mostly in racing games:

•Up to now, only real driving with RL:
"Learning to Drive in a Day" (2018, [1])

• Embed DRL in a real car, and learn « from scratch »
• But VERY SIMPLE CASE: lane keeping along 250m!

• Simulation used before to design architecture and find hyper-
parameters

[1] A. Kendall et al.: Learning to Drive in a Day (2018)

Asynchronous methods for deep reinforcement learning, V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. 
Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, ICML’2016.

End-to-End Race Driving with Deep Reinforcement Learning, Maximilian Jaritz, Raoul De Charette, 
Marin Toromanoff, Etienne Perot, Fawzi Nashashibi, ICRA 2018 - IEEE International Conference on 

Robotics and Automation, Brisbane, Australia, May 2018.
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End-to-end driving learnt by 
RL in racing-cars simulator

End-to-End Race Driving with Deep Reinforcement Learning, Maximilian Jaritz, Raoul De Charette, Marin 
Toromanoff, Etienne Perot, Fawzi Nashashibi, ICRA 2018 - IEEE International Conference on Robotics

and Automation, Brisbane, Australia, May 2018.
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RL for Automated Driving:
why learn in a simulator?

• RL require huge amount of trial & error, and 
initial policy = very bad driving!
! Learn in simulation (for safety + speed)

• Still few driving simulators adapted for DL and 
RL, and best ones not totally mature

[1] A. Dosovitskiy: CARLA: An Open Urban Driving Simulator (2017)

[1]

à Choice of CARLA
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CARLA benchmarks

•First benchmark: navigation tasks with 4 possible 
orders at intersections (Left, Straight, Right, Follow_Lane) and 
4 difficulty levels:

§ Straight (never turn at intersection)
§ One Turn
§ Navigation = longer path with at least 2 orders
§ Dynamic Navigation = + pedestrians and cars 

But metrics = only %arrival at destination!

•CARLA challenge (current): idem + respecting
traffic lights, and handling lane-change
•Evaluation metrics = Task completion 

& Distance between infractions
• Final test on unseen city, and several unseen weathers! 
• Results (and 10.000$ for winner!) at CVPR’2019 (June 16-17)
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•Rainbow [1] = combination of many improvements 
of DQN [4] è currently SoA on ATARI benchmark

• IQN [2] = learning with probability distributions 
rather than just expectation of average 

•Ape-X [3] multi-agent version of DQN allowing 
massively parallel distributed learning
! Largely better performance, but typically require

22 billions of frames (vs. 200 millions)

RL used: Rainbow + IQN + ApeX

[1] M. Hessel et al : Rainbow: Combining Improvements in Deep Reinforcement Learning Matteo (2017)

[2] D. Silver et al : Implicit Quantile Networks for Distributional Reinforcement Learning (2018)

[3] B. Horgan et al : Distributed Prioritized Experience Replay (2018)

[4] V. Mnih et al : Human-level control through deep reinforcement learning (2015)
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• Multi-head architecture for high-level navigation goal
(straight / left-or-right turn at intersections)

• Negative reward = f(distance from center-of-lane) 
+ positive reward = g(speed – recommanded_value) 

[36 km/h in our initial tests]

• End of episod if collision or too far from lane-center

Learning on 
CARLA first benchmark

Steering angle 
(5 values)

Acceleration 
(3 values)

Straight/Left/Right

or

Ego-speed
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Rainbow-IQN > Rainbow >>> Baseline RL CARLA
(but metrics = only %arrival at destination!)

Preliminary tests 
on first CARLA benchmark

TASK

Baseline RL 

(Train Town)

Rainbow-IQN 
(Train Town)

Baseline RL 

(Test Town)

Rainbow-IQN 
segmentation 
(Test Town)

Straight 89% 88% 74% 96%

One Turn 34% 80% 12% 76%

Navigation 14% 68% 3% 52%

Dynamic Nav. 7% 52% 2% 44%
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Example of result
for “Go Straight”
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Example of test result
with turns
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Conclusions & perspectives

• End-to-end driving by Imitation-Learning can work 
and generalize rather well, but requires human driving 
data of all representative situations!!

• Deep Reinforcement Learning in CARLA simulator for 
End-to-end driving à Very encouraging preliminary 
results

• Potential improvement of driving smoothness by 
increasing # of discretization levels for actions

• Currently in progress: participation to CARLA challenge
à handling of Traffic Lights (etc…) using a pre-learnt 
input transformation (instead of raw images)

• Future work: 
• transferrability to real-world videos
• Combination of Imitation-Learning and RL?
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QUESTIONS?

[very first test on new CARLA challenge]


