

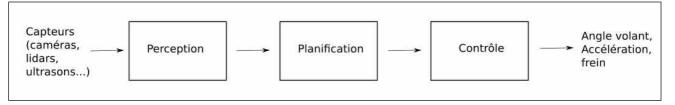
Deep Reinforcement Learning for End-to-End driving

Marin TOROMANOFF^{1,2}, Emilie WIRBEL¹ & Fabien MOUTARDE²

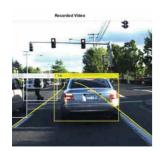
¹Valeo Driving Assistance ¹Center for Robotics, MINES ParisTech, PSL Université

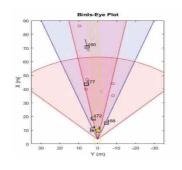
Deep Reinforcement Learning for End-to-end driving, Valeo & Center for Robotics of MINES ParisTech, Apr.2019 1

Idea of end-to-end driving



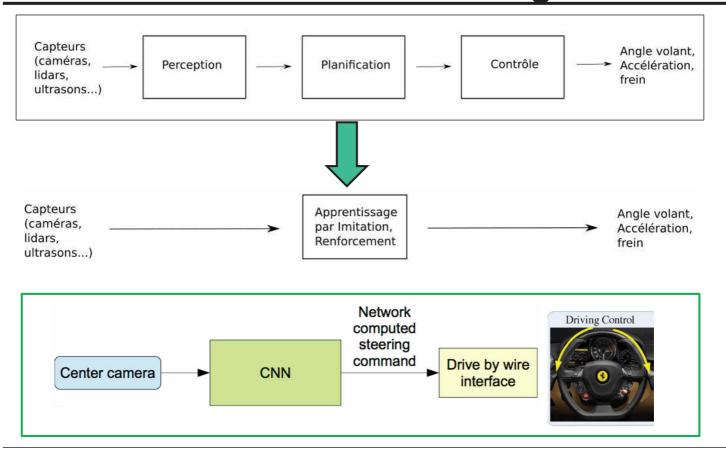
Current architecture for automated driving





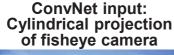
vs. HUMAN driving: turn/accelerate-brake by just looking in front ("intelligent" visual servoing)

Principle of end-to-end driving



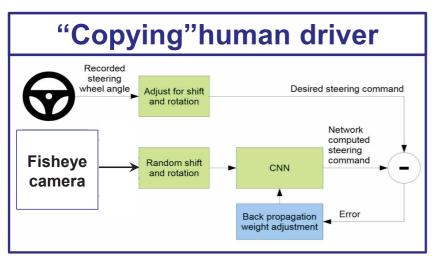
Deep Reinforcement Learning for End-to-end driving, Valeo & Center for Robotics of MINES ParisTech, Apr.2019 3

Imitation Learning for end-to-end driving





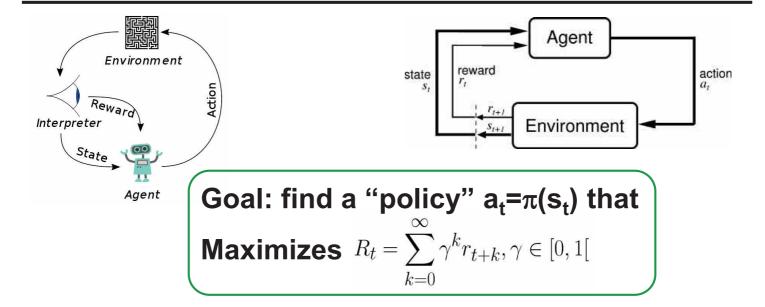
ConvNet output: steering angle



Also successful tests on a real car!! (demo@CES'2018)

<u>"End to End Vehicle Lateral Control Using a Single Fisheye Camera"</u>, Marin Toromanoff, Emilie Wirbel, Frédéric Wilhelm, Camilo Vejarano, Xavier Perrotton et Fabien Moutarde, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018), Madrid, Spain, 1-5 oct. 2018.

Reinforcement Learning (RL)



Deep Reinforcement Learning (DRL) if Deep NeuralNet used as model (for policy and/or its "value"): DQN, Actor-Critic A3C

End-to-end driving: policy π searched as ConvNet(front-image)

Deep Reinforcement Learning for End-to-end driving, Valeo & Center for Robotics of MINES ParisTech, Apr.2019 5

95L 3 families of RL algorithms

- Policy-based $\pi_{\theta} \approx \pi^*$ optimize a parameterized policy
- $Q(s, a, \theta) \simeq Q^{\pi^*}(s, a)$ Value-based find the optimal (parameterized) Q-value

Model-free

Model-based

$$m(s_t, a_t, \theta') \approx s_{t+1}, r_{t+1}$$

Value and Q-function

Value of a policy (from a given state)

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_t|s_t = s] = \mathbb{E}_{\pi}[\sum_{k=0}^{T} \gamma^t r_{t+k}|s_t = s]$$

Q-function of a policy

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_t | s_t = s, a_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{T} \gamma^t r_{t+k} | s_t = s, a_t = a]$$

THERE ALWAYS EXISTS A DETERMINISTIC OPTIMAL POLICY π^*

$$\forall \pi, \forall s \in S, V_{\pi^*}(s) \geqslant V_{\pi}(s)$$

Deep Reinforcement Learning for End-to-end driving, Valeo & Center for Robotics of MINES ParisTech, Apr.2019 7

Deep Q Network (DQN)

$$\bullet \ \textbf{Q-learning:} \ \textit{Q}^{\textit{new}}(s_t, a_t) \leftarrow (1 - \alpha) \cdot \underbrace{\textit{Q}(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} \textit{Q}(s_{t+1}, a)}_{\text{estimate of optimal future value}}\right)}_{\text{estimate of optimal future value}}$$

Optimal policy deduced from optimal Q-value

$$\pi^*(s) = \arg\max_{a} Q_{\pi^*}(s, a)$$

 DQN [1]: if too many possible states, approximate Q as a neural network, and learn Q* using SGD with loss from Bellman equation

$$L(s_t, a_t, r_{t+1}, s_{t+1}, \theta) = \underbrace{(r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a, \theta))^{-2} - Q(s_t, a_t, \theta))^{2}}_{target}$$

[1] V. Mnih et al: Human-level control through deep reinforcement learning (2015)

PSL* RL for automated driving

Until recently, very few published research, and mostly in racing games:

Asynchronous methods for deep reinforcement learning, V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, ICML'2016.

End-to-End Race Driving with Deep Reinforcement Learning, Maximilian Jaritz, Raoul De Charette, Marin Toromanoff, Etienne Perot, Fawzi Nashashibi, ICRA 2018 - IEEE International Conference on Robotics and Automation, Brisbane, Australia, May 2018.

- Only current real driving with RL: "Learning to Drive in a Day" (2018, [1])
 - · Embed DRL in a real car, and learn « from scratch »
 - But VERY SIMPLE CASE: lane keeping along 250m!
 - · Simulation used before to design architecture and find hyper-parameters [1] A. Kendall et al.: Learning to Drive in a Day (2018)

Deep Reinforcement Learning for End-to-end driving, Valeo & Center for Robotics of MINES ParisTech, Apr.2019 9

End-to-end driving learnt by RL in racing-car simulator

Snow (SE)

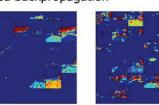
Performance

Trained for 196 million steps

Game graphics

Test on training track

Network input and guided backpropagation



Activations

End-to-End Race Driving with Deep Reinforcement Learning, Maximilian Jaritz, Raoul De Charette, Marin Toromanoff, Etienne Perot, Fawzi Nashashibi, ICRA 2018 - IEEE International Conference on Robotics and Automation, Brisbane, Australia, May 2018.

RL for Automated Driving: why learn in a simulator?

- RL require huge amount of trial & error, and initial policy = very bad driving!
 - ⇒ Learn in <u>simulation</u> (for safety + speed)
- Still few driving simulators adapted for DL and RL, and best ones not totally mature

Simulateur	GTA	DeepDrive.io	AirSim	CARLA[1]
Flexibilité		++	++	1000
Variété	++		_	+
Complexité/Réalisme	++		=	-
Objets mobiles	++			+
Vitesse éxecution		-1-	+	+
Multi-agent		1	77.5	++

[1] A. Dosovitskiy: CARLA: An Open Urban Driving Simulator (2017)

→ Choice of CARLA

Deep Reinforcement Learning for End-to-end driving, Valeo & Center for Robotics of MINES ParisTech, Apr.2019 11

CARLA benchmarks

- •First benchmark: navigation tasks with 4 possible orders at intersections (Left, Straight, Right, Follow_Lane) and 4 difficulty levels:
 - Straight (never turn at intersection)
 - One Turn
 - Navigation = longer path with at least 2 orders
 - Dynamic Navigation = + pedestrians and cars
 But metrics = only %arrival at destination!)
- <u>CARLA challenge</u> (current): idem + respecting traffic lights, and handling lane-change
 - Evaluation metrics = Task completion
 - & Distance between infractions
 - · Final test on unseen city, and several unseen weather!
 - Results (and 10.000\$ for winner!) at CVPR'2019 (June 16-17)

PSL* RL used: Rainbow + IQN + ApeX Valeo

- Rainbow [1] = combination of many improvements of DQN [4] -> currently SoA on ATARI benchmark
- IQN [2] = learning with *probability distributions* rather than just expectation of average

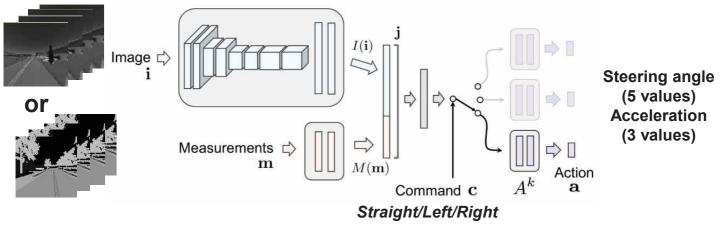
	Mean	Median	Human Gap	Seeds
DQN	228%	79%	0.334	1
PRIOR.	434%	124%	0.178	1
C51	701%	178%	0.152	1
RAINBOW	1189%	230%	0.144	2
QR-DQN	864%	193%	0.165	3
IQN	1019%	218%	0.141	5

- Ape-X [3] multi-agent version of DQN allowing massively parallel distributed learning
 - ⇒ Largely better performance, but typically require 22 billions of frames (vs. 200 millions)
 - [1] M. Hessel et al: Rainbow: Combining Improvements in Deep Reinforcement Learning Matteo (2017)
 - [2] D. Silver et al: Implicit Quantile Networks for Distributional Reinforcement Learning (2018)
 - [3] B. Horgan et al: Distributed Prioritized Experience Replay (2018)
 - [4] V. Mnih et al: Human-level control through deep reinforcement learning (2015)

Deep Reinforcement Learning for End-to-end driving, Valeo & Center for Robotics of MINES ParisTech, Apr.2019 13

Learning on **CARLA 1st benchmark**

 Multi-head architecture for high-level navigation goal (straight / left-or-right turn at intersections)



- **Negative reward = f(distance from center-of-lane)**
- + positive reward = g(speed recommanded_value) [36 km/h in our initial tests]
- End of episod if collision or too far from lane-center

Preliminary tests on first CARLA benchmark

TASK	Baseline RL (Train Town)	Rainbow-IQN (Train Town)	Baseline RL (Test Town)	Rainbow-IQN segmentation (Test Town)
Straight	89%	88%	74%	96%
One Turn	34%	80%	12%	76%
Navigation	14%	68%	3%	52%
Dynamic Nav.	7%	52%	2%	44%

Rainbow-IQN > Rainbow >>> Baseline RL CARLA (but metrics = only %arrival at destination!)

Deep Reinforcement Learning for End-to-end driving, Valeo & Center for Robotics of MINES ParisTech, Apr.2019 15

Example of result for "Go Straight"

Example of test result with turns

Deep Reinforcement Learning for End-to-end driving, Valeo & Center for Robotics of MINES ParisTech, Apr.2019 17

PSL* Conclusions & perspectives Valeo

- Very encouraging preliminary results (even though some stability problems...)
- Potential improvement of driving smoothness by increasing # of discretization levels for actions
- Currently in progress: participation to **CARLA** challenge
 - → handling of Traffic Lights (etc...) using a pre-learnt input transformation (instead of raw images)
- Future work:
 - transferrability to real-world videos
 - Combination of Imitation-Learning and RL?

QUESTIONS?

[very first test on new CARLA challenge]

CURRENT ORDER : Follow_Lane
CURRENT SPEED : 0.00 km/h

Deep Reinforcement Learning for End-to-end driving, Valeo & Center for Robotics of MINES ParisTech, Apr.2019 19