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What types of Intelligences are
//M@j/ PSL*  heeded for Automated Vehicles?

e "Semantic"” interpretation of vehicle’s environment:

— Detect and categorize/recognize objects
(cars, pedestrians, bicycles, traffic signs, traffic lights, ...)

— Ego-localization

— Predict movements of other road users

— Infer intentions of other drivers and pedestrians (or
policeman!) from their movements/gestures/gazes

e Planning of trajectories (including speed)
In a dynamic and uncertain environment

e Coordinated/cooperative planning of multiple vehicles

* For Advanced Driving Assistance Systems (ADAS)
and partial automated driving (level 3-4):
— Analyze and understand attention and activities or
gestures of the "driver-supervisor"
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/{/7/ . | PSL* Outline

« What can Deep-Learning perform with images?
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//ng/ . ' PSLx  Image-based Deep-Learning

ParisTech

* Image classification

* Visual object detection and cateqgorization
« Semantic segmentation of images
 Realistic image synthesis

- Image-based localization
« Estimation of Human pose
* Inference of 3D (depth) from monocular vision
 Learning image-based behaviors
« End-to-end driving from front camera
* Learning robot behavior from
demonstration/imitation
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}M/]j/ . PsLx Visually detect & categorize objects

ParisTech

]
Visual objects Simultaneous Detection and Categorization
with Faster_RCNN
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;/j PSL% Beyond bounding-boxes:

e getting contours of objects

Mask R-CNN extracts detailed contours and shapes of
objects instead of just bounding-boxes
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//MQZ/ PSLx Example result of semantic
e segmentation by Deep-Learning

[C. Farabet, C. Couprie, L. Najman & Yann LeCun: Learning Hierarchical Features for Scene Labeling,
IEEE Trans. PAMI, Aug.2013.

Semantic segmentation provides category information
also for large regions (not only individualized « objects »)
such as « road », « building », etc...

Deep-Learning for Automated Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL 14/1/2020 7

£ . | PsLx DL for realistic Image synthesis

ParisTech

"Video-to-Video Synthesis", NeurlPS’2018 [Nvidia+MIT]
Using Generative Adversarial Network (GAN)
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¥ psLx  PoseNet: 6-DoF camera-pose

paridtocn X reqression with Deep-Learning
Inout RGB Convolutional 6-DOF
f Neural Network )
mage (GoogLeNet) Camera Pose

King’s College Street Old Hospital Shop Facade St Mary’s Church

Figure 4: Map of dataset showing training frames (green), testing frames (blue) and their predicted camera pose (red). The testing
sequences are distinct trajectories from the training sequences and each scene covers a very large spatial extent.

[A. Kendall, M. Grimes & R. Cipolla, "PoseNet: A Convolutional Network for Real-Time
6-DOF Camera Relocalization"” , ICCV’2015, pp. 2938-2946]
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 psLx Human pose estimation by

A > Deep-Learning

. .. Peci 5 A b .‘

OnenPose

Real-time estimation of Human poses on RGB video

[Realtime Multi-Person 2D Pose Estimation using Part Affinity Field,
Cao et al., CVPR’2017 [CMU]
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//cg/  PSL® Inference of 3D (depth)

MINES from monocular vision

Par lsTech

Unsupervised monocular depth estimation with left-right consistency
C Godard, O Mac Aodha, GJ Brostow - CVPR’2017 [UCL]
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A | ps .« EnNd-to-end driving from camera

e x by Deep-Learning

ConvNet output:
steering angle
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ConvNet input:
Cylindrical projection of
fisheye camera
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Imitation Learning from Human driving on real data
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End-to-end driving via Deep Reinforcement Learning
[thése CIFRE Valeo/MINES-ParisTech en cours]
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* Visual Object detection & Semantic Segmentation
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g g . Visual objects Detection and
e PSLx Categorization: Faster RCNN

Refine BB position

FaSter R-CNN Object is a cat

Object or not object BB proposal
, Rol pooling
proposals/ /
Region Proposal Network
pre-train image-net
Y 4
y

Region Proposal Network (RPN) on top of standard convNet.
End-to-end training with combination of 4 losses
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Object visual detection
}MZ/ | PSL% without proposal

Solve detection as a regression problem
(“single-shot” detection)

YOLO and SSD

YOU ONLY LOOK ONCE(YO LO) SINGLE SHOT MULTIBOX DETECTOR(SSD)
s o Extra Feature Layers
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Images from: https://www.slideshare.net/TaeavunJeon1/pri2-you-only-look-once-yolo-unified-realtime-object-detection

Both are faster, but less accurate, than Faster R-CNN
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/,CZ/ PSL % Recent comparison of

MINES - -
object detection convNets
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Slide from Ross Girshick’s CVPR 2017 Tutorial, Original Figure from Huang et al
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Mask RCNN: Categorization and
//g]{ PSLx Localization with shape/contours

. box
regression

A_!_A

classification

fully connected

head<<

AN fixed size feature map

RoIAlign layer

- A feature map

Mask R-CNN architecture (left) extracts detailed contours
and shape of objects instead of just bounding-boxes
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//cjj/ PSL ¥ Deep-Learning approach
A for semantic segmentation

forward /inference

backward /learning

cfybbsfjb 21
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/Z/f/ PSL® Convolutional
Encoder-Decoder

Convolutional Encoder-Decoder
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//CZ/ PSL* SegNet example results

Par lsTech
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/fj PSL* Outline

MINES
Par |\Tech

* Image-based ego-localization
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/Zf/ psLx  PoseNet: 6-DoF camera pose

regression with Deep-Learning

s i ‘

Convolutional
Neural Network - 6'DO|P:
(GoogLeNet) amera Pose

Input RGB
Image

Trained with a naive end-to-end loss function to

regress camera position, X, and orientation, q

loss(I) = [|x —X||, + B “q

[A. Kendall, M. Grimes & R. Cipolla, ""PoseNet: A Convolutional Network for Real-Time 6-DOF Camera
Relocalization« , ICCV’2015, pp. 2938-2946]
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AT psLx PoseNet training data

MINES

and test results

training data in green, test data in blue, PoseNet results in red

Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.
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//CZ/ PSL* PoseNet results on other tests

Par |sTech

30m A |

King’s College Street Old Hospital Shop Facade St Mary’s Church

Figure 4: Map of dataset showing training frames (green), testing frames (blue) and their predicted camera pose (red). The testing
sequences are distinct trajectories from the training sequences and each scene covers a very large spatial extent.
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AT psLx PoseNet robustness

ParisTech

Tolerance to environment, unknown intrinsics, weather, etc.

Blur (¢ Dusk Night

A N

cclusion
AN F o

........ ==

Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.
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/ u
AT psLx PoseNet summary:
e robust to scene change + very fast

v'Robust to lighting, weather, dynamic objects

v'Fast inference, <2ms per image on Titan GPU

v'Scale not dependent on number of training images
X Coarse accuracy

X Difficult to learn both position vs orientation

Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.
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AT psLx PoseNet vs traditional methods

ParisTech

Dataset PoseNet with Active Search
Geometry [1] (SIFT + Geometry) [2]

King’s College 0.88m, 1.04° 0.42m, 0.55°
Resolution 256 x 256 px 1920 x 1080 px
Inference Time 2 ms 78 ms

PoseNet less precise, but much faster
and can work with much smaller images
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g4 PSL% Deep-Learning pose regression
N X i from geo-tagged images

« Learn an only 3-DoF pose (x,y,0)

» Start transfer learning from InceptionV3 model
modified as follows:

— final classifier replaced by a dropout layer

— fully connected layer with 256 neurons
added and connected to final 3-dimension
pose regressor

* Use StreetView “augmented” with virtual

panorama

Work by Dr Li YU during his PhD thesis
@ VeDeCom-MINES ParisTech
(defended in Apr.2018)

-
o) @ "RECSDTA'URAN
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yo s PSL % Results of Deep-Learning visual
localization trained on GIS images

MINES
Pa |'isTech*
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Pl PSL% GIS-trained adapted PoseNet
vs. Coarse-to-fine image matching

MINES
Pa rischh*

<> Original Handcrafted Feature < Extended Handcrafted Feature Adapted PoseNet

6.75

4.5

Position Error (m)

2.25
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0
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» Handcrafted feature method (2x) more accurate + smooth positions

» BUT convNet based method much faster to compute, and
reaches accuracy of a standard GPS.
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 Human posture and movement analysis
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A psLx Automated Vehicles
Pl SToen ¥ ” interactions with Humans

Need to monitor and interpret Human
movements, actions & activities:

— Inference of Human intentions (pedestrians
and drivers) for Automated Vehicles

— Gestual communication with Humans
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4 . Pose estimation now possible from
//MQZ/* | PSLE RGB camera (openPose)

ParisTech

Trajectories
of joints

Deep-Learning for Automated Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL 14/1/2020 33

24 . . -
//97/ . PSL*x Deep-Learning for time-series

Two main approaches:
* Deep Recurrent Neural Network (RNN) e.g. LSTM or GRU

 Temporal Convolutions

General overview of the proposed network

Overview of the 3 branches
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"Convolutional Neural Networks for Multivariate Time Series Classification using both Inter- and Intra- Channel Parallel

Convolutions”, G. Devineau, W. Xi, F. Moutarde and J. Yang, RFIAP'2018.
"Deep Learning for Hand Gesture Recognition on Skeletal Data”, G. Devineau, W. Xi, F. Moutarde and J. Yang, FG'2018.

[PhD thesis of Guillaume Devineau @ MINES_ParisTech, supervised by me]
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o ' psLxGombining DL pose estimation + Deep
porien X - Temporal Convolution (or/and RNN)?

Camera

DL pose estimation
(openPose/alphaPose)

Deep Temporal Convolution (or/and
Deep RNN?) for Multivariate Time-Series

Recognized
action/gesture
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A | psLx Inferring pedestrian intention
N X i from posture?

New PhD thesis started at VeDeCom by Joseph GESNOUIN
(supervised by Bogdan Stanciulescu and me)
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}Z/* PSL* Conclusions

* Deep Convolutional Neural Networks already can
perform many more things than just image

classification: semantic segmentation, localization from vision,
estimation of Human pose, inference of depth from monovision,
generation of realistic synthetic images, and learning complex
image-based adaptive behaviors

 The above can be leveraged for many Al challenges for
Automated Vehicles:

* image-based ego-localization by convNet

- for Human movements or intents analysis, combining
human-pose estimation by DL with Deep Temporal
Convolution of time-series seems promising

» adaptive behavior learning as an image-based end-to-end
driving task [NEXT DECK OF SLIDES]
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}Zf | PSL* Questions ?
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