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Outline

• Specificities of SEQUENTIAL data

• Alignment of sequences by DTW

• Model sequential data with HMM
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Specificities of 
SEQUENTIAL data

• 2 specific problems:

– How to compare sequences? 

– Length often VARIABLE!
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Handling COMPARISON 
of sequences 

• 2 main types of approaches:

– Alignment of sequences 

à Dynamic Time Warping (DTW)

– Model-based method 

(e.g. Hidden Markov Model, HMM)
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Handling VARIABLE LENGTH 
of sequences 

• 2 main types of approaches:

– Time Resampling or Padding

(but unapplicable for “stream” inline recognition)

– Model-based methods: streaming successive 

inputs into a fixed-size model

• Hidden Markov Model (HMM)

• Recurrent Neural Network (RNN)
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Dynamic Time Warping

• Principle of DTW:

1. Align sequences and compute an adapted 

similarity measure 

2. Perform recognition by template-matching 

with k Nearest Neighbors (using DTW 

similarity)
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Alignment of sequences

[Slide from Elena Tsiporkova]
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[Slide from Elena Tsiporkova]

Warping function
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Time-Normalized
Distance Measure

[Slide from Elena Tsiporkova]
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[Slide from Elena Tsiporkova]

Optimizing DTW algorithm
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Usual restrictions 
on Warping function

[Slide from Elena Tsiporkova]
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[Slide from Elena Tsiporkova]

Other restrictions 
on Warping function
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Slope constraints
on Warping function

[Slide from Elena Tsiporkova]
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[Slide from Elena Tsiporkova]

Choice of weighting coefficients
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Pros and Cons of DTW

• Pros

– Allows speed-insensitive and flexible 

alignment

• Cons

– Computationally expansive 

(especially for multi-variate time-series)

– Vanilla version is OFFLINE (i.e. after gesture)

BUT “STREAM DTW” version solves this issue
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Stochastic (probabilistic) model

obtained by statistical analysis of

sequences of many examples of same class

What is a HMM?
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« The future is independent of the past,

given the present »

Andreï Andreïevitch Markov

Андрей Андреевич Марков 

2 June 1856 - 20 July 1921

Markovian??
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• Set of N States, {S1, S2,… SN}

• Sequence of states Q ={q1, q2,…}

• Initial probabilities π={π1, π2,… πN}

– πi=P(q1=Si)

• Transition matrix A NxN

• aij=P(qt+1=Sj | qt=Si)

Markov chains
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Weather model: 

• 3 states {sunny, rainy,

cloudy}

S1 S1 S2 S1 S2 
Problem:

• Forecast weather state, based

on the current weather state

Example of Markov chain
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Let’s pick arbitrarily some numbers for ! |"# "#$% and draw a probabilistic finite state 

automaton

0,2

0,4

22 S1
S2 S3

S5 S4

0,4

0,40,4

0,4

0,4

0,4

0,4

0,4

0,4

0,2

0,2

0,20,2

Question

Given that now the state is S2, what’s the probability that next state will be S3 AND the 

state after will be S4?

Markov chain in action
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Answer to Question

This translates into:

You can also think this as moving through the automaton, multiplying the probabilities

S2 S3 S4

= ! "& = |'( ") = '&, "% = ') *

! ") = |'& "% = ')

= ! "& = |'( ") = '& *

! ") = |'& "% = ')

= 0,4 * 0,4

= 0,16

! ") = '&, "& = '(+"% = ')
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λ=(A, B, π): Hidden Markov Model

• A={aij}: Transition probabilities between HIDDEN states 
– aij=P(qt+1=Sj | qt=Si)

• Β={bi(x)}: Emission probabilities for observation given hidden
state
– bi(Οt)=P(Οt=x | qt=Si)

• π={πi}: Initial state probabilistic distribution
– πi=P(q1=Si)
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S1 S2 S3 S4 
S1 S2 S3 S4

S1 

S2 

S3 S1 S2 S4 S6 

S3 S5 

Left to right (A) Left to right (B)

Left to right (C) Ergodic

Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021    26

• Evaluation

– O, λ → P(O|λ)

• Uncover the hidden part

– O, λ →  Q that P(Q|O, λ) is maximum 

• Learning

– {Ο} →  λ such that P(O|λ) is maximum
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O, λ → P(O|λ) ?

• Solved by the Forward algorithm

Applications

– Find some likely samples

– Evaluation of a sequence of 

observations

– Change detection

S1 S2 S4 S6 S3 S5

x� x� x� x� x� x�

a 11 a 22 a 33 a 44 a 55 a 66

a 12 a 23 a 34 a 45 a 56

b1(x) b2(x) b3(x) b4(x) b5(x) b6(x)

aaaaaaaaaa 23

conditionally

independent

Initialisation Induction Termination
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• {Ο} →  λ such that P(O|λ) is maximum

• No analytic solution

• Solved by Baum-Welch algorithm

(which is particular case of Expectation 

Maximization [EM] algo) when some

data is missing (the states)

• Applications

– Unsupervised Learning (single HMM)

– Supervised Learning (multiple HMM)

ηθ

g

max
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Sequence of

observations

Μ1

Μ2

Μ4

….

….

Gesture

recognition

Likelihood

computation

Maximum 

likelihood

computation

….

Likelihood

computation

Likelihood

computation

O(t)1:7

• Typically, learn ONE HMM per class, and then sequentially

feed data in all HMM, so each one updates likelihood of

sequence
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Pros and Cons of HMM

• Pros

– Natural handling of variable length

• Cons

– Many hyper-parameters (ARCHITECTURE and 

# of hidden states)
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Synthesis

• Sequential data raise specific problems: 

– what similarity measure should be used?

(cf alignment problem)

– Often variable length input

• Two main shallow ML approaches adapted to this 

specificities:

– Dynamic Time Warping (DTW) 

– Hidden Markov Model (HMM)

Deep-Learning à Deep RECURRENT Neural Nets (LSTM, GRU)

or 1D ConvNet over time
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Any QUESTIONS ?


