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 Specificities of SEQUENTIAL data
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%, Specificities of
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» 2 specific problems:
— How to compare sequences?
— Length often VARIABLE!
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% Handling COMPARISON
/%* PSLx of sequences

ParisTech

« 2 main types of approaches:

— Alignment of sequences
- Dynamic Time Warping (DTW)

— Model-based method
(e.g. Hidden Markov Model, HMM)
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4 , Handling VARIABLE LENGTH
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« 2 main types of approaches:

— Time Resampling or Padding
(but unapplicable for “stream” inline recognition)

— Model-based methods: streaming successive
inputs into a fixed-size model

* Hidden Markov Model (HMM)
* Recurrent Neural Network (RNN)
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* Alignment of sequence by DTW
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}M/%f* 'PSLx  Dynamic Time Warping

* Principle of DTW:

1. Align sequences and compute an adapted
similarity measure

2. Perform recognition by template-matching
with k Nearest Neighbors (using DTW
similarity)
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1 I 1 I = I 1 1 I L,
time time
Any distance (Euclidean, Manhattan, A non-linear (elastic) alignment
...) which aligns the i-th pomt on one produces a more intuitive similarity
time series with the i-th point on the measure, allowing similar shapes to
other will produce a poor similarity match even if they are out of phase in
score. the time axis.

[Slide from Elena Tsiporkova]
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}M;f PSL* Warping function

Time Series A

1 L n

m . .IJI:

=) To find the best alignment
& between 4 and @ one needs to

find the path through the grid

P=g e o s el
P=(.J)

Js P which minimizes the total
[ distance between them.

@ Pis called a warping function.

Time Series B || 200

[Slide from Elena Tsiporkova]
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Time-Normalized
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Time Series A
Time-normalized distance between

1 i n Aand B:
m L0 k
@& Z:d(ps)-w6

L[ ]

d(p,): distance between i_and ;.

w, > 0: weighting coefficient.

[@) Best alignment path between 4
® and @ :

B P,= argmin(D(4, B)).
P

Time Series B || 0

[Slide from Elena Tsiporkova]
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Time Series A
. ; The number of possible warping
- TTTe ‘: paths through the grid is
o000 00 exponentially explosive!
(L) 0 e @ i
@ 000 e reduction of the
® oe ® o0 search space
L [ ) o0 [ J
[ J o0 o @ T : .
® ®® ® e Restrictions on the warping function:
—% : : ® ® : « monotonicity
)\—: ........ : « continuity
: : .. .' @ « boundary conditions
L J
o0 o000 ® « warping window
o000 0 006 :
Time Series B || (0|00 0/0/0@/@® * slope constraint.

[Slide from Elena Tsiporkova]
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/,@f PSL% Usual restrictions

MINES
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Monotonicity: i,y <i; and j_, <j.. Continuity: i, — i,y <1 andj, —j._, < L.
The alignment path does not go back The alignment path does not jump in
in “time” index. “ftime” index.
: ~ AN " =
J @ J o J
t 1
— —
Guarantees that features are not Guarantees that the alignment does
repeated in the alignment. not omit important features.

[Slide from Elena Tsiporkova]
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Other restrictions
on Warping function

Boundarv Conditions: i; =1, i,=n and
=L jy=m.

The alignment path starts at the bottom
left and ends at the top right.

V)
m A

p
(1, —i n

1.£

Guarantees that the alignment does not
consider partially one of the sequences.

AL

Warping Window: |i; — j,| < r, where r >0
is the window length.

A good alignment path is unlikely to
wander too far from the diagonal.

_bi

Guarantees that the alignment does not
try to skip different features and gets
stuck at similar features.

[Slide from Elena Tsiporkova]
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on Warping function

too shallow.

The alignment path should not be too steep or

Prevents that very short parts of the sequences
are matched to very long ones.

Slope Constraint: (j\j’ = Ji Y4 isp - iSO) <pand ( isq — i»fo) / (j\j ~Js,)<q,where ¢ =0
is the number of steps in the x-direction and p > 0 is the number of steps in the -

direction. After ¢ steps in x one must step in y and vice versa: S=p / ¢ €[0, «]|.

—_

ul —
}SP <q
—

LA

[Slide from Elena Tsiporkova]
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}M{%{* ' PSL* Choice of weighting coefficients

Time-normalized distance between 4 and & :

2 Weighting Coefficient Definitions
D.d(p,)-w, «  Symmetric form

D(4, )= min| = : . o
B complicates w, = (b= 1) + (= Js1)s
optimisation
¥ then C = n + m.

Asymmetric form

Seeking a weighting coefficient function which

guarantees that: & w, =@ —i_),
(= Z w,
=g then C = n.
is independent of the warping function. Thus Or equivalently,
l : - w = s '7 ;
D(ﬂ,@):—jnnn{zai(ps).wé} L S =y )
( - s=1 _
then C = m.

can be solved by use of dynamic programming.

[Slide from Elena Tsiporkova]
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* Pros

— Allows speed-insensitive and flexible
alignment

e Cons

— Computationally expansive
(especially for multi-variate time-series)

— Vanilla version is OFFLINE (i.e. after gesture)
BUT “STREAM DTW?” version solves this issue
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* Model sequential data with HMM
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HMM = Hidden Markov Model

Stochastic (probabilistic) model
obtained by statistical analysis of
sequences of many examples of same class
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« The future is independent of the past,
given the present »

Andrei Andreievitch Markov
AHOpeli AHOpeesuy Mapkos
2 June 1856 - 20 July 1921
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Model definitior

+ Set of N States, {S1, S2,... Sn}

« Sequence of states Q ={q1, g2,...}

+ Initial probabilities Tr={1T1, TT2,... TIN}
— mi=P(q1=Si)

¢ Transition matrix A NxN
«  a=P(q1=Sj| q=S))
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Example in weather for

pcast

Weather model:
« 3 states {sunny, rainy,
cloudy}

Problem: O 0 0 00

* Forecast weather state, based
on the current weather state
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/%f* 'PSLx»  Markov chain in action
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Let’s pick arbitrarily some numbers for P(q;|q;-1) and draw a probabilistic finite state

automaton

Question
Given that now the state is S,, what'’s the probability that next state will be S; AND the

state after will be S,?
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Answer to Question

—0—0

This translates into:

P(Qz =S53,q3 = 54|CI1 = 52) = P(q3 = S41q2 = S3,q1 = S2)*
P(qz = S31q1 = S3)
= P(q3 = S4lq2 = S3) *
P(qz = S3lq1 = S2)
= 0,4+04
= 0,16

You can also think this as moving through the automaton, multiplying the probabilities
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Hidden Markov Model

A=(A, B, 1r): Hidden Markov Model

A={aj}: Transition probabilities between HIDDEN states
— ai=P(q+1=Sj| qi=Si)

B={bi(x)}: Emission probabilities for observation given hidden

state P(ba(ki))
— bi(O1)=P(O=x | qt=Si) ‘{D(bz(kz))
« ={m}: Initial state probabilistic distribution F

- m=P(q1=Si)

P(bo(ky))

P(bo(k,)

P(balki)
Az

P(bsky))
| Plostia)
< | Ptk

% [P(by(k)
5| P(bs(ky))
P(b1(k))
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Left to right (A) Left to right (B)

00«

Left to right (C) Ergodic
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e Evaluation
— O, A= P(O|A)

* Uncover the hidden part
— O, A — Qthat P(Q|O, A) is maximum

« Learning
— {O} — A such that P(OJA) is maximum
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O,A— P(O|A) ?
» Solved by the Forward algorithm

Applications
— Find some likely samples
— Evaluation of a sequence of
observations
— Change detection

conditionally
independent
Initialisation Induction Termination
& () =7, *b,(0,) () = [Z“ (f)a.;,}*b,—(m PO13)- Y a0
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« {O} — Asuch that P(OJA) is maximum
* No analytic solution
+ Solved by Baum-Welch algorithm

(which is particular case of Expectation  ,

Maximization [EM] algo) when some g 1
data is missing (the states) “
* Applications m max
— Unsupervised Learning (single HMM) “
— Supervised Learning (multiple HMM) >
0 n

v
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» Typically, learn ONE HMM per class, and then sequentially
feed data in all HMM, so each one updates likelihood of

sequence \MH
;

Likelihood
—* computation

: MZ Gesture
Maximum recognition

Likelihood likelihood
> computation computation

Sequence of
observations

Ot)y

Likelihood
computation

4
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HMINES e : pplication exampie

Axe 2 :
Reconnaissance des gestes pour la
collaboration Homme-Robot
sur chaine de montage

Comité d'Evaluation et d'Orientation
30 Septembre 2015

Real-time continuous Gesture Recognition with HMUM
for Human-Robot Collaboration
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* Pros
— Natural handling of variable length

e Cons

— Many hyper-parameters (ARCHITECTURE and
# of hidden states)
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« Sequential data raise specific problems:

— what similarity measure should be used?
(cf alignment problem)

— Often variable length input

« Two main shallow ML approaches adapted to this
specificities:
— Dynamic Time Warping (DTW)
— Hidden Markov Model (HMM)

Deep-Learning - Deep RECURRENT Neural Nets (LSTM, GRU)
or 1D ConvNet over time
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Any QUESTIONS ?
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