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Deep-Learning
recent breakthroughs

Very significant improvement over State-of-the-Art
in Pattern Recognition / Image Semantic Analysis:

• won many vision pattern 
recognition competitions (OCR, 
TSR, object categorization, facial 
expression,…)

• deployed in photo-tagging by 
Facebook, Google,Baidu,…

Similar dramatic progress in Speech recognition +
Natural Language Processing (NLP) 
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Main application domains 
of Deep-Learning
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Is Deep-Learning
« Large-Scale »?

Big and/or « Fat » data

Deep-Learning: Large MODELS

State-of-the-Art Convolutional Neural Networks

contain > 100 layers, millions of parameters
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Importance of training data!

Dramatic recent progresses in image classification and
visual object categorization not only due to Deep-Learning
and convNets:

it was made possible largely thanks to ImageNet dataset,
which is a HUGE collection of labelled general-purpose
images (1000 categories, > 1 million examples)

Most powerful convNets have been trained
on this huge dataset!
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Importance of « features »
in classical Machine-Learning

Examples of hand-crafted features

HoG
(Histogram

of Gradients)

Haar features Control-points features
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What is Deep-Learning?

[Figure from Goodfellow]

Increasing level of abstraction

Each stage ~ trainable feature transform

Image recognition
Pixel → edge → texton → motif → part → object

Speech
Sample → spectral band → … → phoneme → word

Text
Character → word → word group → clause → 

sentence → story

Learning a hierarchy of

increasingly abstract representations
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Deep-Learning vs.
shallow Machine-Learning

DL: jointly learn
classification and features

Shallow ML using
handcrafted features
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Why features should be
learnt?

Example: Face images of 1000x1000 pixels 
è « raw » examples are vectors in R1000000 !!

• BUT:
– position = 3 cartesian coord
– orientation 3 Euler angles 
– 50 muscles in face
– Luminosity, color

è Set of all images of ONE person has ≤ 69 dim

à Examples of face images of 1 person

are all in a LOW-dim manifold 

inside a HUGE-dim space

Real data examples for a given task are usually
not spreaded everywhere in input space, but rather
clustered on a low-dimension « manifold »
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Good features
~ « mapping » on manifold   

L
u
m
in
o
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Convolutional Neural Networks 
(CNN, or ConvNet)

• Proposed in 1998 by Yann LeCun (french prof.@ NYU, 
now also AI research director of Facebook)

• For inputs with correlated dims (2D image, 1D signal,…)
• Supervised learning
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ConvNets (2)

• Wins most vision pattern recognition competitions (OCR, 
TSR, object categorization, facial expression,…)

• Deployed in photo-tagging by Facebook, Google, Baidu,…
• Also used in real-time video analysis for self-driving cars
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Short reminder on what is
a (multi-layer) Neural Network

Input

Hidden layers 
(0, 1 or more)

Y1

Y2

X1

X2

X3

Output layer

For “Multi-Layer Perceptron” (MLP), 
neurons type generally “summating with sigmoid activation”

Connections
with Weights
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Reminder on 
artificial “neurons”

PRINCIPLE ACTIVATION FUNCTIONS

• Threshold (Heaviside or sign)
à binary neurons

• Sigmoïd (logistic or tanh)
à most common for MLPs

• Gaussian

• Identity  à linear neurons
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• Saturation

• ReLU (Rectified Linear Unit)
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Why MLP directly on pixels 
is generally a BAD idea?

Huge # of parameters, NO invariance at all
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Why convolutions?

And ANY shift-invariant & linear system can always 

be expressed as a CONVOLUTION:

(where h[n] is the impulse response).

For image “semantic” classification, 

shift-invariance of features is useful

=
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Convolution: 
sliding a 3D filter over image

At sliding position i,j

! ", # = $ +%. &'(
with &'( = 5x5 image patch in 3 colors

à vector of dim 75, as filter coeffs in %

5x5x3 filter

Non-linear activation:

) ", # = * ! ", #

f= tanh, ReLU, …
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Convolution in action

From http://cs231n.github.io/convolutional-networks/ 
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Example of typical results 
of convolution 
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« Neural » view of
convolution filters and layers
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Each convolution FILTER 

is one set of neuron parameters

Each convolution LAYER 
is a set of ~imageSize neurons, but 

they all have same SHARED weights

(perform SAME convolution)
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Convolutional v.s.
Fully-connected
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# of filters

Convolutional layers

A convNet: succession of Convolution+activation Layers

NB: each convolution layer processes FULL DEPTH 

of previous activation map

One “activation map” for each 

convolution filter 



Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022    27

Convolution of convolutions! 
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Pooling layers

Goal: 
• aggregation over space

• noise reduction,

• small-translation invariance, 

• small-scaling invariance
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Pooling layers algorithm
details

Parameters:
• pooling size (often 2x2)

• pooling stride (usually = pooling_size)

• Pooling operation: max, average, Lp,…

Example: 2x2 pooling, stride 2
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Final classification layer:
just a classical MLP

AlexNet
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Global architecture of 
convNets

Succession of Convolution 

(+ optional activation) layers and 

Pooling layers, which extract the 

hierarchy of features, followed by 

dense (fully connected) layer(s) 

for final classification

Input image

Convolution 
(+Activation)

Convolution 
(+Activation)

Pooling

Convolution
(+Activation)

Pooling

Dense
(Fully Connected)

Output
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Typical convolutional filters after 
training

Architecture with a deep succession of layers 

processing coarser and coarser “images” 
è Lower layer learns optimized low-level filters 

(detection of ~edges in L1, ~corners/arcs in L2)

èHigher level layers learn more “abstract” filters 

(~“texture types” in L3, ~object parts in L4 )

èLast layer output a representation on which it is easy 

to discriminate between classes
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ConvNet training

All successive layers of a convNet forms a Deep neural
network (with weigh-sharing inside each conv. Layer, and
specific pooling layers).

Training a NN = optimizing values of weights&biases

è Stochastic Gradient Descent (SGD),
using back-propagation:

– Input 1 (or a few) random training sample(s)
– Propagate
– Calculate error (loss)
– Back-propagate through all layers from end to input,

to compute gradient
– Update convolution filter weights
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Computing gradient 
through cascade of modules
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Recall of back-prop principle

Smart method for efficient computing of gradient
(w.r.t. weights) of a Neural Network cost function, 

based on chain rule for derivation.

Cost function is Q(t) = Sm loss(Ym,Dm), where m runs over 

training set examples

Usually, loss(Ym,Dm) = ||Ym-Dm||2  [quadratic error]

Total gradient:
W(t+1) = W(t) - l(t) gradW(Q(t))  + m(t)(W(t)-W(t-1))

Stochastic gradient: 
W(t+1) = W(t) - l(t) gradW(Qm(t)) + m(t)(W(t)-W(t-1))

where Qm=loss(Ym,Dm), is error computed on only ONE example

randomly drawn from training set at every iteration and
l(t) = learning rate (fixed, decreasing or adaptive), m(t) = momentum 

Now, how to compute dQm/dWij?
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Backprop through layers: 
chain rule derivative computation

wij

yjyifsi
sj f fskwjk

Otherwise, dj=(dEm/dsj)=Sk (dEm/dsk)(dsk/dsj)=Skdk(dsk/dsj) =SkdkWjk(dyj/dsj)

so   dj = (Sk Wjkdk)f'(sj) if neuron j is “hidden”

dEm/dWij =(dEm/dsj)(dsj/dWij)=(dEm/dsj) yi

Let dj = (dEm/dsj). Then   Wij(t+1) = Wij(t) - l(t) yi dj

If neuron j is output, dj = (dEm/dsj) = (dEm/dyj)(dyj/dsj) with Em=||Ym-Dm||2

so   dj = 2(yj-Dj)f'(sj) if neuron j is an output

(and W0j(t+1) = W0j(t) - l(t)dj)

è all the dj can be computed successively from last layer
to upstream layers by “error backpropagation” from output
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Error surface for neural net are NOT CONVEX !

• Local minima dominate in low-Dim…
• …but recent work has shown that saddle points 

dominate in high-Dim

• Furthermore, most local minima are close to 
the global minimum

Why gradient descent works
despites non-convexity?
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Saddle points in 
training curves

• Oscillating between two behaviors:

– Slowly approaching a saddle point

– Escaping it

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022    40

Some ConvNet
training « tricks »

• Importance of input normalization
(zero mean, unit variance)

• Importance of weights initialization
random but SMALL and prop. to 1/sqrt(nbInputs)

• Decreasing (or adaptive) learning rate

• Importance of training set size
ConvNets often have a LARGE number of free parameters
è train them with a sufficiently large training-set !

• Avoid overfitting by:
– Early Stopping of learning iterations

– Use of L1 or L2 regularization (after some epochs)

– Use « Dropout » regularization (esp. on large FC layers)
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What is Overfitting?

Trying to fit too many 
free parameters with 

not enough information 
can lead to overfitting

How to detect overfitting for iterative training?

Better = AVOID overfitting by REGULARIZATION
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Avoid overfitting
by EARLY STOPPING

• For Neural Networks, a first method to avoid

overfitting is to STOP LEARNING iterations as

soon as the validation_error stops decreasing

• Generally, not a good idea to decide the

number of iterations beforehand. Better to

ALWAYS USE EARLY STOPPING
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Avoid overfitting using
L1/L2 regularization

For neural network, the regularization term is just the
L2- or L1- norm of the vector of all weights:

K = Sm(loss(Ym,Dm)) + β Sij |Wij|
p

with p=2 (L2) or p=1 (L1)

à name “Weight decay”

Regularization = penalizing too complex models
Often done by adding a special term to cost 
function
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DropOut regularization for
convNet training

At each training stage, individual nodes can be temporarily

"dropped out" of the net with probability p (usually ~0.5), 

or re-installed with last values of weights
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Batch Normalization

• Inputs are usually normalized, but for layers
other than the first one, inputs are the outputs 
from previous layers, which may be far from
staying centered around [-1;1]

è Idea of renormalizing between layers:

Øduring training, normalize within each mini-batch

(coordinate-wise removing of mean + normalizing by 

standard deviation à each componant centered with

s=1)

Ø for inference after training, use a fixed normalization

(based on whole training set)

Inserting BatchNorm layer just before or after each
activation layer is generally good idea
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Examples of
very successful ConvNets

• LeNet: 1st successful applications of ConvNets, by Yann LeCun in 1990’s. 

Used to read zip codes, digits, etc.

• AlexNet: Beginning of ConvNet “buzz”: largely outperformed competitors 

in ImageNet_ILSVRC2012 challenge. Developped by Alex Krizhevsky et

al., architecture similar to LeNet (but deeper+larger, and some chained 

ConvLayers before Pooling). 60 M parameters !

• ZF Net: ILSVRC 2013 winner. Developped by Zeiler&Fergus, by modif of

AlexNet on some architecture hyperparameters.

• GoogLeNet: ILSVRC 2014 winner, developed by Google. Introduced 

an Inception Module, + AveragePooling instead of FullyConnected layer at

output. Dramatic reduction of number of parameters (4M, compared to 

AlexNet with 60M). 

• VGGNet: Runner-up in ILSVRC 2014. Very deep (16 CONV/FC layers) 

à 140M parameters !!

• ResNet: ILSVRC 2015, “Residual Network” introducing “skip” connections. 

Currently ~ SoA in convNet. Very long training but fast execution.
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LeNet, for digits/letters
recognition [LeCun et al., 1998]

Input: 32x32 image
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AlexNet, for image categorisation
[Krizhevsky et al. 2012]

Input: 224x224x3 image

60 million parameters !...
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GoogleNet
[Szegedy et al., 2014]



Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022    52

ResNet (Residual Net), by 
Microsoft [He et al., 2015]

• ILSVRC 2015 large winner in 5 main tracks

(3.6% top 5 error)

• 152 layers!!!

• But novelty = "skip" connections
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ResNet global architecture

• 2-3 weeks of training on 8 GPU machine !!

• However, at runtime faster than a VGGNet!

(even though it has 8x more layers)

Basic block
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Performance comparison of 
usual convNet architectures
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Summary of recent
ConvNet history

But most important is the choice of

ARCHITECTURAL STRUCTURE
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Current SoA convNets

• ResNeXt

• Xception

• MobileNet

• NASnet

• SqueezeNet

• PyramidNet

• DenseNet

• etc!!…

DenseNet principle:

connect each convolution layer 

to ALL PREVIOUS LAYERS 
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Current SoA convNets:
performances on ImageNet
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convNets and GPU

Good convNets are very big (millions of parameters!)

Training generally performed on BIG datasets

è Training time more manageable using GPU
acceleration for ultra-parallel processing
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Programming environments
for Deep-Learning 

• TensorFlow https://www.tensorflow.org

• KERAS   https://keras.io
Python front-end APIs mapped either

on Tensor-Flow or Theano back-end

• PyTorch https://pytorch.org/

• Caffe http://caffe.berkeleyvision.org/

C++ library, hooks from Python à notebooks

• Theano http://www.deeplearning.net/software/theano/

• Lasagne http://lasagne.readthedocs.io

lightweight library to build+train neural nets in Theano

All of them handle transparent use of GPU,

and most of them are used in Python code/notebook
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Example of convNet code
in Keras

model = Sequential()

# 1 set of (Convolution+Pooling) layers, with Dropout
model.add(Convolution2D(conv_depth_1, kernel_size, kernel_size, 

border_mode='valid', input_shape=(depth, height, width)))
model.add( MaxPooling2D(pool_size=(pooling_size, pooling_size)) )
model.add(Activation('relu'))
model.add(Dropout(drop_prob))

# Now flatten to 1D, and apply 1 Fully_Connected layer
model.add(Flatten())
model.add(Dense(hidden_size1, init='lecun_uniform'))
model.add(Activation('sigmoid'))

# Finally add a Softmax output layer, with 1 neuron per class
model.add(Dense(num_classes, init='lecun_uniform'))
model.add(Activation('softmax'))

# Training "session
sgd = SGD(lr=learning_rate, momentum=0.8) # Optimizer
model.compile(loss='categorical_crossentropy', optimizer=sgd)
model.fit(X_train, Y_train, batch_size=32, nb_epoch=2, verbose=1, 

validation_split=valid_proportion)

# Evaluate the trained model on the test set
model.evaluate(X_test, Y_test, verbose=1)
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Power and Generality of
learnt representation

By removing last layer(s) (those for classification) of a convNet
trained on ImageNet, one obtains a transformation of any
input image into a semi-abstract representation, which can
be used for learning SOMETHING ELSE (« transfer learning »):

– either by just using learnt representation as features

– or by creating new convNet output and perform learning
of new output layers + fine-tuning of re-used layers
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Transfer learning
and fine-tuning

• SoA convNets trained on ImageNet are image CLASSIFIERS
for one object per image

• Many object categories can be irrelevant (e.g. boat in a office)

èFor each application, models are usually obtained  from state-
of-the-art ConvNets pre-trained on ImageNet (winners of yearly 
challenge, eg: AlexNet, VGG, Inception, ResNet, etc…)

èAdaptation is performed by Transfer Learning, ie
modification+training of last layers and/or fine-tuning of 
pre-trained weights of lower layers

or fine-tuning

Pre-trained convNet
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Transfer Learning 
with few training examples

• Using a CNN pre-trained on a large dataset,
possible to adapt it to another task, using only
a SMALL training set!
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Transfer-Learning even 
improves permormances!

[Yosinski, Clune, Bengio, Lipson, 

"How transferable are features in 

deep neural networks?", ICML’2014]
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Some transfer-learning
applications

• Learning on simulated synthetic images 
+ fine-tuning on real-world images

• Recognition/classification for OTHER categories
or classes

• Training an objects detector (or a semantic
segmenter)

• Precise localization (position+bearing) = PoseNet

• Human posture estimation = openPose

• End-to-end driving (imitation Learning)

• 3D informations (depth map) from monovision!
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Transfer Learning 
code example in Keras

from keras.applications.inception_v3 import InceptionV3

from keras.preprocessing import image 

from keras.models import Model 

from keras.layers import Dense, GlobalAveragePooling2D 

from keras import backend as K 

# create the base pre-trained model base_model = InceptionV3(weights='imagenet', 

include_top=False) 

# add a global spatial average pooling layer

x = base_model.output x = GlobalAveragePooling2D()(x) 

# let's add a fully-connected layer

x = Dense(1024, activation='relu')(x) 

# and a logistic layer -- let's say we have 200 classes

predictions = Dense(200, activation='softmax')(x) 

# this is the model we will train

model = Model(input=base_model.input, output=predictions) 

# first: train only the top layers (which were randomly initialized)

# i.e. freeze all convolutional InceptionV3 layers

for layer in base_model.layers: 

layer.trainable = False

# compile the model (should be done *after* setting layers to non-trainable)

model.compile(optimizer='rmsprop', loss='categorical_crossentropy') 

# train the model on the new data for a few epochs

model.fit_generator(...)
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Outline

• Introduction to Deep Learning

• Convolutional Neural Networks (CNN or ConvNets)
– Intro + Short reminder on Neural Nets

– Convolution layers & Pooling layers + global architecture

– Training algorithm + Dropout Regularization

• Useful pre-trained convNets

• Coding frameworks

• Transfer Learning

• Object localization and Semantic segmentation

• Deep-Learning on 1D signal and 3D data

• Recent other image-based applications



Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022    70

Deep-Learning for 
visual object DETECTION

The high-level representation computed by last
convolution layer can be analyzed for detection and
localization (bounding-boxes) of all objects of
interesting categories
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Region Proposal Network (RPN) on top of standard convNet.

End-to-end training with combination of 4 losses

Visual objects Detection and
Categorization: Faster_RCNN
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Example of visual DETECTION 
& categorization with Faster_R-CNN

ConvNets are currently state-of-the-art
ALSO for visual objects detection
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Object visual detection
without proposal

Solve detection as a regression problem

(“single-shot” detection)

YOLO          and            SSD

Both are faster, but less accurate, than Faster_R-CNN
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Recent comparison of 
object detection convNets
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Mask_RCNN: categorization and 
localization with shape/contours

Mask R-CNN architecture (left) extracts detailed contours 

and shape of objects instead of just bounding-boxes
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Semantic segmentation
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Convolutional
Encoder-Decoder
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Many competitors for DL of
semantic segmentation

• SegNet (2015)

• U-Net (2015)

• RefineNet (2016)

• ICnet (2017)

• DeepLab

• …

VERY HOT TOPIC !!!

Many competitors for semantic segmentation 

by deep-learning:
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• Deep-Learning on 1D signal and 3D data

• Recent other image-based applications
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Deep-TEMPORAL Convolution 
for multivariate time-series

MC-DCNN model 
(separate 1D temporal convolution of each time-serie)
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Deep Gesture Recognition

Work in progress at center for Robotics of MINES ParisTech

(PhD thesis of Guillaume Devineau)

Hand gesture

recognition:

90% acuracy

(vs 83% baseline)

Potential applicability to other kinds of time-series!
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Deep-Learning on 3D data

Possible to use:
• ConvNets on 2D images of multiple views

• ConvNet on 2D DEPTH image(s)

• Convolutions of 3D points

• 3D convolutions on voxels (see next slide)

Multiview

(Su et al., 2015)

PointCNN (Li et al., 2018)PointNet++ (Qi et al., 2017)
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Deep-Learning with 
3D convolutions on voxels

Voxel grid

(3D + channels)

-/ × -/ × -/ × 0 3D - CNN

3D object

Car

3D ShapeNets

(Wu et al., 2015)

VoxNet

(Maturana et al., 2015)
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What can Deep Convolutional
Networks perform?

• Image classification

• Visual object detection and categorization

• Semantic segmentation of images

• …

AND ALSO:

• Image-based localization

• Estimation of Human pose

• Inference of 3D (depth) from monocular vision 

• Learning image-based behaviors

• End-to-end driving from front camera

• Learning robot behavior from

demonstration/imitation
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PoseNet: 6-DoF camera-pose 
regression with Deep-Learning

[A. Kendall, M. Grimes & R. Cipolla, "PoseNet: A Convolutional Network for Real-Time 

6-DOF Camera Relocalization" , ICCV’2015, pp. 2938-2946]
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Human posture estimation 
by Deep-Learning

Real-time estimation of Human poses on RGB video

OpenPose [Realtime Multi-Person 2D Pose Estimation using Part Affinity Field, 

Cao et al., CVPR’2017 [CMU]
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Inference of 3D (depth)
from monocular vision

Unsupervised monocular depth estimation with left-right consistency

C Godard, O Mac Aodha, GJ Brostow - CVPR’2017 [UCL]
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End-to-end driving from camera 
by Deep-Learning

End-to-end driving via Deep Reinforcement Learning 

[thèse CIFRE Valeo/MINES-ParisTech en cours]

ConvNet input: 
Cylindrical projection of 

fisheye camera

ConvNet output: 

steering angle

Imitation Learning from Human driving on real data 
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Robot task learning using
Reinforcement Learning
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Learning complex behavior with
Deep Reinforcement Learning

Work by Google DeepMind
[Learning by Playing Solving Sparse Reward Tasks from Scratch, Riedmiller et al. (ICML’2018)]
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Summary on ConvNets
& Deep-Learning

• Proven advantage of learning features empirically
from data

• Large ConvNets require huge amounts of
labelled examples data for training

• Current research/progresses = finding efficient
global architecture of ConvNets

• Enormous potential of TRANSFER-LEARNING on 
small datasets for restricted/specialized problems

• ConvNets also for multivariate time-series
(1D temporal convolutions) and for 3D data (3D conv
on voxels, etc…)

• ConvNets can potentially infer from image ANYTHING 
for which information is in the image (3D, movement,
planning, …)
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Perspectives on Deep-Learning

Next frontiers:

• Theoretical aspects

• Robustness issues (cf. adversarial examples)

• UNsupervised deep-learning on unlabelled data

• Deep Reinforcement Learning (DRL)

• Deep Recurrent Neural Networks (LSTM, GRU, 

etc…) for sequence processing (NLP!) or modeling

behavior & dynamics

Van diff

+

Ostrich!!

=
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Any QUESTIONS ?


