

Deep-Learning:

general principles + Convolutional Neural Networks

Pr. Fabien MOUTARDE Center for Robotics Mines Paris PSL Université Paris

Fabien.Moutarde@minesparis.psl.eu

http://people.minesparis.psl.eu/fabien.moutarde

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 1

PSL

Acknowledgements

During preparation of these slides, I got inspiration and borrowed some slide content from several sources, in particular:

- Yann LeCun + MA Ranzato: slides on « *Deep Learning* » from the corresponding course at NYU <u>http://cilvr.cs.nyu.edu/doku.php?id=deeplearning:slides:start</u>
- Hinton+Bengio+LeCun: slides of the NIPS'2015 tutorial on Deep Learning http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf
- Fei-Fei Li + A.Karpathy + J.Johnson: Stanford course lecture slides on « Convolutional Neural Networks » <u>http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf</u>

- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets
- Coding frameworks

PSL 🖈

MINES **★** ParisTech

- Transfer Learning
- Object localization and Semantic segmentation
- Deep-Learning on 1D signal and 3D data
- Recent other image-based applications

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 3

Deep-Learning recent breakthroughs

Very significant improvement over State-of-the-Art in Pattern Recognition / Image Semantic Analysis:

- won many vision pattern recognition competitions (OCR, TSR, object categorization, facial expression,...)
- deployed in photo-tagging by Facebook, Google,Baidu,...

Similar dramatic progress in Speech recognition + Natural Language Processing (NLP)

Main application domains of Deep-Learning

Object recognition

Все счастливые семьи похожи друг на друга, каждая несчастливая семья несчастлива по-своему.

Happy families are all alike. Every unhappy family is unhappy in its own way.

Language processing

Scene analysis

Speech recognition

Robotics

Medical diagnosis & Bio-informatics

Dramatic recent progresses in image classification and visual object categorization not only due to Deep-Learning and convNets:

it was made possible largely thanks to ImageNet dataset, which is a HUGE collection of labelled general-purpose images (1000 categories, > 1 million examples)

PSL 🖈

What is Deep-Learning?

Learning a *hierarchy* of increasingly abstract *representations*

Why features should be learnt?

Real data examples for a given task are usually not spreaded everywhere in input space, but rather clustered on a low-dimension « manifold »

Example: Face images of 1000x1000 pixels → « raw » examples are vectors in R¹⁰⁰⁰⁰⁰⁰ !!

- <u>BUT:</u>
 - position = 3 cartesian coord
 - orientation 3 Euler angles
 - 50 muscles in face
 - Luminosity, color
- → Set of all images of ONE person has ≤ 69 dim

→ Examples of face images of 1 person are all in a LOW-dim manifold inside a HUGE-dim space

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 11

Good features ~ « mapping » on manifold

- Introduction to Deep Learning
- <u>Convolutional Neural Networks (CNN or ConvNets)</u>
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets
- Coding frameworks
- Transfer Learning
- Object localization and Semantic segmentation
- Deep-Learning on 1D signal and 3D data
- Recent other image-based applications

For inputs with correlated dims (2D <u>image</u>, 1D signal,..
 <u>Supervised</u> learning

ConvNets (2)

- Wins most vision pattern recognition competitions (OCR, TSR, object categorization, facial expression,...)
- Deployed in photo-tagging by Facebook, Google, Baidu,...
- Also used in real-time video analysis for self-driving cars

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 15

PSL A (multi-layer) Neural Network

For "Multi-Layer Perceptron" (MLP), neurons type generally "summating with sigmoid activation"

Huge # of parameters, NO invariance at all

Why convolutions?

For image "semantic" classification, shift-invariance of features is useful

And <u>ANY shift-invariant & linear system can always</u> be expressed as a *CONVOLUTION*:

 $y[n] = \sum x[m] h[n-m]$

(where *h*[*n*] is the impulse response).

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 19

Outline

- Introduction to Deep Learning
- <u>Convolutional Neural Networks (CNN or ConvNets)</u>
 - Intro + Short reminder on Neural Nets
 - <u>Convolution layers & Pooling layers + global architecture</u>
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets
- Coding frameworks
- Transfer Learning
- Object localization and Semantic segmentation
- Deep-Learning on 1D signal and 3D data
- Recent other image-based applications

	*	Convo	lution in action	on
Input Volume (+pad 1) (7x7x3) x[: ; ; ; 0] 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0	Filter W0 (3x3x3) w0[:,:,0] -1 0 1 0 0 1 1 -1 1 w0[:,:,1] -1 0 1 1 -1 1 0 1 0 w0[:,:,2] 1 1 1 1 1 0 0 -1 0 Bias b0 (1x1x1) b0[:,:,0]	Filter W1 (3x3x3) w1[:,:,0] 0 1 -1 0 -1 0 0 -1 1 w1[:,:,1] -1 0 1 -1 0 w1[:,:,2] -1 -1 0 w1[:,:,2] -1 -1 1 0 Bias b1 (1x1x1) b1[:,:,0] 0 toggle m	Output Volume (3x3x2) o[:,:,0] 2 3 3 3 7 3 8 10 -3 o[:,:,1] -8 -8 -3 -3 1 0 -3 -8 -5 overnent	
0 0 0 0 0 0 0	From http:	//cs231n.gi	thub.io/convolutional-	networks/

Example of typical results of convolution

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 23

« Neural » view of convolution filters and layers

PSL 🖈

W₀ = "bias" f = activation function

Each convolution LAYER is a set of ~imageSize neurons, but they all have <u>same SHARED weights</u> (perform SAME convolution)

Pooling layers

<u>Goal:</u>

- aggregation over space
- noise reduction,
- small-translation invariance,
- small-scaling invariance

Parameters:

- pooling size (often 2x2)
- pooling stride (usually = pooling_size)
- Pooling operation: <u>max</u>, average, Lp,...

PSL Typical convolutional filters after training

Architecture with a deep succession of layers processing coarser and coarser "images"
 → Lower layer learns optimized low-level filters (detection of ~edges in L1, ~corners/arcs in L2)

→ Higher level layers learn more "abstract" filters

(~"texture types" in L3, ~object parts in L4)

MINES + ParisTech

Last layer output a representation on which it is easy to discriminate between classes

- Introduction to Deep Learning
- <u>Convolutional Neural Networks (CNN or ConvNets)</u>
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets
- Coding frameworks
- Transfer Learning
- Object localization and Semantic segmentation
- Deep-Learning on 1D signal and 3D data
- Recent other image-based applications

ConvNet training

All successive layers of a convNet forms a Deep neural network (with weigh-sharing inside each conv. Layer, and specific pooling layers).

Training a NN = optimizing values of weights&biases

→ Stochastic Gradient Descent (SGD),

using back-propagation:

- Input 1 (or a few) random training sample(s)
- Propagate
- Calculate error (loss)
- Back-propagate through all layers from end to input, to compute gradient
- Update convolution filter weights

MINES ParisTech PSL 🖈

Computing gradient through cascade of modules

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 35

PSL Recall of back-prop principle

Smart method for efficient computing of gradient (w.r.t. weights) of a Neural Network cost function, based on chain rule for derivation.

Cost function is $Q(t) = \Sigma_m loss(Y_m, D_m)$, where m runs over training set examples

Usually, $loss(Y_m, D_m) = ||Y_m - D_m||^2$ [quadratic error] <u>Total gradient:</u>

 $W(t+1) = W(t) - \lambda(t) \operatorname{grad}_{W}(Q(t)) + \mu(t)(W(t)-W(t-1))$ Stochastic gradient:

 $W(t+1) = W(t) - \lambda(t) \operatorname{grad}_{W}(Q_{m}(t)) + \mu(t)(W(t)-W(t-1))$

where $Q_m = IOSS(Y_m, D_m)$, is error computed on <u>only ONE</u> example randomly drawn from training set at every iteration and $\lambda(t) = Iearning rate$ (fixed, decreasing or adaptive), $\mu(t) = momentum$

Now, how to compute dQ_m/dW_{ii} ?

Saddle points in training curves

- Oscillating between two behaviors:
 - Slowly approaching a saddle point
 - Escaping it

PSL 🖈

MINES ParisTech

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 39

Some ConvNet training « tricks »

- Importance of <u>input normalization</u> (zero mean, unit variance)
- Importance of <u>weights initialization</u> random but SMALL and prop. to 1/sqrt(nblnputs)
- Decreasing (or adaptive) learning rate
- Importance of <u>training set size</u>
 ConvNets often have a LARGE number of free parameters
 → train them with a sufficiently large training-set !
- <u>Avoid overfitting</u> by:
 - <u>Early Stopping of learning iterations</u>
 - Use of L1 or L2 regularization (after some epochs)
 - Use <u>« Dropout » regularization</u> (esp. on large FC layers)

Avoid <u>overfitting</u> by EARLY STOPPING

- For Neural Networks, a first method to avoid overfitting is to STOP LEARNING iterations as soon as the *validation_error* stops decreasing
- Generally, not a good idea to decide the number of iterations beforehand. Better to ALWAYS USE EARLY STOPPING

PSL 🖈

MINES ParisTech

<u>Regularization</u> = penalizing too complex models Often done by adding a special term to cost function

For neural network, the regularization term is just the L2- or L1- <u>norm of the vector of all weights</u>:

K = Σ_m(loss(Y_m,D_m)) + β Σ_{ij} |W_{ij}|^p with p=2 (L2) or p=1 (L1) → name "Weight decay"

At each training stage, individual nodes can be temporarily "dropped out" of the net with probability p (usually ~0.5), or re-installed with last values of weights

Batch Normalization

 Inputs are usually normalized, but for layers other than the first one, inputs are the outputs from previous layers, which may be far from staying centered around [-1;1]

→ Idea of <u>renormalizing between layers</u>:

- > during training, normalize <u>within each mini-batch</u> (coordinate-wise removing of mean + normalizing by standard deviation \rightarrow each componant centered with σ =1)
- For inference after training, use a *fixed* normalization (based on whole training set)

Inserting BatchNorm layer just before or after each activation layer is generally good idea

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 45

PSL 🖈

PSL 🖈

MINES ParisTech

Outline

- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets
- Coding frameworks
- Transfer Learning
- Object localization and Semantic segmentation
- Deep-Learning on 1D signal and 3D data
- Recent other image-based applications

MINES PSL * Examples of Very successful ConvNets

- LeNet: 1st successful applications of ConvNets, by Yann LeCun in 1990's. Used to read zip codes, digits, etc.
- AlexNet: Beginning of ConvNet "buzz": largely outperformed competitors in ImageNet_ILSVRC2012 challenge. Developped by Alex Krizhevsky et al., architecture similar to LeNet (but deeper+larger, and some chained ConvLayers before Pooling). 60 M parameters !
- **ZF Net:** ILSVRC 2013 winner. Developped by Zeiler&Fergus, by modif of AlexNet on some architecture hyperparameters.
- GoogLeNet: ILSVRC 2014 winner, developed by Google. Introduced an *Inception Module*, + AveragePooling instead of FullyConnected layer at output. Dramatic reduction of number of parameters (4M, compared to AlexNet with 60M).
- VGGNet: Runner-up in ILSVRC 2014. Very deep (16 CONV/FC layers)
 → 140M parameters !!
- **ResNet:** ILSVRC 2015, "Residual Network" introducing "skip" connections. Currently ~ SoA in convNet. Very long training but fast execution.

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 47

PSLIMLeNet, for digits/letters
recognition [LeCun et al., 1998]

Input: 32x32 image

MINES ParisTech

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC] MINES ParisTech

Input: 224x224x3 image

60 million parameters !...

- ILSVRC 2015 <u>larg</u>e winner in 5 main tracks (3.6% top 5 error)
- 152 layers!!!
- But novelty = <u>"skip" connections</u>

PSL 🖈

ResNet global architecture

Performance comparison of usual convNet architectures

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 54

PSL 🖈

MINES ParisTech

Summary of recent ConvNet history

But most important is the choice of ARCHITECTURAL <u>STRUCTURE</u>

Current SoA convNets

- ResNeXt
- Xception
- MobileNet
- NASnet
- SqueezeNet
- PyramidNet
- DenseNet
- etc!!...

connect each convolution layer to ALL PREVIOUS LAYERS

- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets
- <u>Coding frameworks</u>
- Transfer Learning

PSL 🖈

MINES 🛧

- Object localization and Semantic segmentation
- Deep-Learning on 1D signal and 3D data
- Recent other image-based applications

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 58

convNets and GPU

Good convNets are very big (millions of parameters!)

Training generally performed on BIG datasets

➔ Training time more manageable using <u>GPU</u> acceleration for ultra-parallel processing

PSL 🖈

Programming environments for Deep-Learning

- TensorFlow https://www.tensorflow.org
- KERAS <u>https://keras.io</u> Python <u>front-end APIs</u> mapped either on Tensor-Flow or Theano back-end
- PyTorch https://pytorch.org/
- Caffe <u>http://caffe.berkeleyvision.org/</u> C++ library, hooks from Python → notebooks
- Theano http://www.deeplearning.net/software/theano/
- Lasagne <u>http://lasagne.readthedocs.io</u> lightweight library to build+train neural nets in Theano

All of them handle transparent use of GPU, and most of them are used in Python code/notebook

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 60

Example of convNet code in Keras

model = Sequential()

```
# 1 set of (Convolution+Pooling) layers, with Dropout
model.add(Convolution2D(conv depth 1, kernel size, kernel size,
             border mode='valid', input shape=(depth, height, width)))
model.add( MaxPooling2D(pool size=(pooling size, pooling size)) )
model.add(Activation('relu'))
model.add(Dropout(drop prob))
# Now flatten to 1D, and apply 1 Fully Connected layer
model.add(Flatten())
model.add(Dense(hidden size1, init='lecun uniform'))
model.add(Activation('sigmoid'))
# Finally add a Softmax output layer, with 1 neuron per class
model.add(Dense(num classes, init='lecun uniform'))
model.add(Activation('softmax'))
# Training "session
sgd = SGD(lr=learning rate, momentum=0.8) # Optimizer
model.compile(loss='categorical crossentropy', optimizer=sgd)
model.fit(X train, Y train, batch size=32, nb epoch=2, verbose=1,
                                   validation split=valid proportion)
# Evaluate the trained model on the test set
model.evaluate(X test, Y test, verbose=1)
```


- Introduction to Deep Learning
- **Convolutional Neural Networks (CNN or ConvNets)** •
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- **Useful pre-trained convNets**
- **Coding frameworks**
- **Transfer Learning**

224

- **Object localization and Semantic segmentation**
- **Deep-Learning on 1D signal and 3D data**
- **Recent other image-based applications**

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 62

4006

4096

Output

By <u>removing last layer(s)</u> (those for classification) of a convNet trained on ImageNet, one obtains a transformation of any input image into a semi-abstract representation, which can be used for learning SOMETHING ELSE (« transfer learning »):

- either by just using learnt representation as features
- or by creating new convNet output and perform learning of new output layers + fine-tuning of re-used layers

Transfer-Learning even improves permormances!

PSL 🖈

MINES ParisTech

> [Yosinski, Clune, Bengio, Lipson, "How transferable are features in deep neural networks?", ICML'2014]

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 66

Some transfer-learning applications

- Learning on simulated synthetic images
 + fine-tuning on real-world images
- Recognition/classification for OTHER categories or classes
- Training an objects detector (or a semantic segmenter)
- Precise localization (position+bearing) = PoseNet
- Human posture estimation = openPose
- End-to-end driving (imitation Learning)
- 3D informations (depth map) from monovision!

Transfer Learning code example in Keras

```
from keras.applications.inception v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras import backend as K
# create the base pre-trained model base model = InceptionV3(weights='imagenet',
                                                              include top=False)
# add a global spatial average pooling layer
x = base model.output x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer -- let's say we have 200 classes
predictions = Dense(200, activation='softmax')(x)
# this is the model we will train
model = Model(input=base model.input, output=predictions)
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
  layer.trainable = False
# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
# train the model on the new data for a few epochs
model.fit generator(...)
```

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 68

PSL

Outline

- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets
- Coding frameworks
- Transfer Learning
- Object localization and Semantic segmentation
- Deep-Learning on 1D signal and 3D data
- Recent other image-based applications

PSL & Example of visual DETECTION & categorization with Faster_R-CNN

ConvNets are currently state-of-the-art ALSO for visual objects detection

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 72

Both are faster, but less accurate, than Faster_R-CNN

PSI 🖈

PSL 🖈

MINES ParisTech

Recent comparison of object detection convNets

Slide from Ross Girshick's CVPR 2017 Tutorial, Original Figure from Huang et al

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 74

Mask_RCNN: categorization and localization with shape/contours

<u>Mask R-CNN</u> architecture (left) extracts detailed contours and shape of objects instead of just bounding-boxes

MINES ParisTech

Many competitors for semantic segmentation by deep-learning:

- SegNet (2015)
- U-Net (2015)
- RefineNet (2016)
- ICnet (2017)
- DeepLab

PSL 🖈

• ...

VERY HOT TOPIC !!!

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 78

Outline

- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets
- Coding frameworks
- Transfer Learning
- Object localization and Semantic segmentation
- Deep-Learning on 1D signal and 3D data
- Recent other image-based applications

PSL 🖈

Deep-TEMPORAL Convolution for multivariate *time-series*

MC-DCNN model (separate 1D temporal convolution of each time-serie)

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 80

Work in progress at center for Robotics of MINES ParisTech (PhD thesis of Guillaume Devineau)

Potential applicability to other kinds of time-series!

PSL Deep-Learning on 3D data

- Introduction to Deep Learning
- Convolutional Neural Networks (CNN or ConvNets)
 - Intro + Short reminder on Neural Nets
 - Convolution layers & Pooling layers + global architecture
 - Training algorithm + Dropout Regularization
- Useful pre-trained convNets
- Coding frameworks
- Transfer Learning
- Object localization and Semantic segmentation
- Deep-Learning on 1D signal and 3D data
- Recent other image-based applications

What can Deep Convolutional Networks perform?

Image classification

PSI 🖈

- Visual object detection and categorization
- Semantic segmentation of images
- ..

AND ALSO:

- Image-based <u>localization</u>
- Estimation of <u>Human pose</u>
- Inference of <u>3D (depth) from monocular vision</u>
- Learning image-based behaviors
 - End-to-end driving from front camera
 - Learning robot behavior from demonstration/imitation

Figure 4: Map of dataset showing training frames (green), testing frames (blue) and their predicted camera pose (red). The testing sequences are distinct trajectories from the training sequences and each scene covers a very large spatial extent.

[A. Kendall, M. Grimes & R. Cipolla, "PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization", ICCV'2015, pp. 2938-2946]

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 86

Human posture estimation by Deep-Learning

Real-time estimation of Human poses on <u>RGB</u> video OpenPose [Realtime Multi-Person 2D Pose Estimation using Part Affinity Field, Cao et al., CVPR'2017 [CMU]

Inference of 3D <u>(depth)</u> from monocular vision

Unsupervised monocular depth estimation with left-right consistency C Godard, O Mac Aodha, GJ Brostow - CVPR'2017 [UCL]

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 88

End-to-end driving from camera

by Deep-Learning

ConvNet input: Cylindrical projection of fisheye camera

ConvNet output: steering angle

Imitation Learning from Human driving on real data

End-to-end driving via Deep <u>Reinforcement</u> Learning [thèse CIFRE Valeo/MINES-ParisTech en cours]

Robot task learning using <u>Reinforcement</u> Learning

Deep-Learning: general principles + convNets, Pr. Fabien MOUTARDE, Center for Robotics, Mines Paris, PSL, march 2022 90

PSL 🖈

Learning complex behavior with Deep Reinforcement Learning

Work by Google DeepMind [Learning by Playing Solving Sparse Reward Tasks from Scratch, Riedmiller et al. (ICML'2018)]

- Proven advantage of learning features empirically from data
- Large ConvNets require huge amounts of <u>labelled</u> examples data for training
- Current research/progresses = finding efficient global <u>architecture</u> of ConvNets
- Enormous potential of TRANSFER-LEARNING on small datasets for restricted/specialized problems
- <u>ConvNets also for multivariate time-series</u> (1D temporal convolutions) <u>and for 3D data</u> (3D conv on voxels, etc...)
- ConvNets can potentially infer from image ANYTHING for which information is in the image (3D, movement, planning, ...)

PSLX Perspectives on Deep-Learning

Next frontiers:

- Theoretical aspects
- Robustness issues (cf. adversarial examples)

- <u>UNsupervised</u> deep-learning on unlabelled data
- Deep <u>Reinforcement</u> Learning (DRL)
- Deep <u>Recurrent</u> Neural Networks (LSTM, GRU, etc...) for sequence processing (NLP!) or modeling behavior & dynamics

Any QUESTIONS ?