
Large Scale Machine Learning

Natural Language Processing

Adeline Fermanian
adeline.fermanian@mines-paristech.fr
March 2023

Mines ParisTech - PSL

1



Acknowledgement

Slides inspired by

• Édouard Grave

• Claire Boyer

• fidle-cnrs

• Charles Deledalle’s lectures

2



Motivation

• Why NLP ?

Process, analyze and/or produce natural language
Interact with computers using natural language

• Many applications (lot of information in text):

text classification, spam detection, topic identification
machine translation
information retrieval, web search
medical records, scientific articles

• Large scale? Wikipedia: 3B words, Common Crawl: 24TB

3



Motivation

• Why NLP ?
Process, analyze and/or produce natural language

Interact with computers using natural language
• Many applications (lot of information in text):

text classification, spam detection, topic identification
machine translation
information retrieval, web search
medical records, scientific articles

• Large scale? Wikipedia: 3B words, Common Crawl: 24TB

3



Motivation

• Why NLP ?
Process, analyze and/or produce natural language
Interact with computers using natural language

• Many applications (lot of information in text):

text classification, spam detection, topic identification
machine translation
information retrieval, web search
medical records, scientific articles

• Large scale? Wikipedia: 3B words, Common Crawl: 24TB

3



Motivation

• Why NLP ?
Process, analyze and/or produce natural language
Interact with computers using natural language

• Many applications (lot of information in text):

text classification, spam detection, topic identification
machine translation
information retrieval, web search
medical records, scientific articles

• Large scale? Wikipedia: 3B words, Common Crawl: 24TB

3



Motivation

• Why NLP ?
Process, analyze and/or produce natural language
Interact with computers using natural language

• Many applications (lot of information in text):
text classification, spam detection, topic identification

machine translation
information retrieval, web search
medical records, scientific articles

• Large scale? Wikipedia: 3B words, Common Crawl: 24TB

3



Motivation

• Why NLP ?
Process, analyze and/or produce natural language
Interact with computers using natural language

• Many applications (lot of information in text):
text classification, spam detection, topic identification
machine translation

information retrieval, web search
medical records, scientific articles

• Large scale? Wikipedia: 3B words, Common Crawl: 24TB

3



Motivation

• Why NLP ?
Process, analyze and/or produce natural language
Interact with computers using natural language

• Many applications (lot of information in text):
text classification, spam detection, topic identification
machine translation
information retrieval, web search

medical records, scientific articles

• Large scale? Wikipedia: 3B words, Common Crawl: 24TB

3



Motivation

• Why NLP ?
Process, analyze and/or produce natural language
Interact with computers using natural language

• Many applications (lot of information in text):
text classification, spam detection, topic identification
machine translation
information retrieval, web search
medical records, scientific articles

• Large scale? Wikipedia: 3B words, Common Crawl: 24TB

3



Motivation

• Why NLP ?
Process, analyze and/or produce natural language
Interact with computers using natural language

• Many applications (lot of information in text):
text classification, spam detection, topic identification
machine translation
information retrieval, web search
medical records, scientific articles

• Large scale? Wikipedia: 3B words, Common Crawl: 24TB

3



Text classification: is this spam?

4



Text classification: is this review positive?

5



Text classification: what is this article about?

6



Large Language Models: ChatGPT

7



Sommaire

Word representation

Recurrent NN

Transformers

8



Tokenization

• How to represent words as input?

“I’ve never seen a movie like this before”

• Split into tokens:

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]
• Issues for tokenization:

I’ve→ [I’ve] or [I] [have] or [I] [’ve] ?
low-frequency → [low-frequency] or [low] [frequency] ?
Some arbitrary choices: be consistent!
Language-dependant!

9



Tokenization

• How to represent words as input?

“I’ve never seen a movie like this before”

• Split into tokens:

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]

• Issues for tokenization:

I’ve→ [I’ve] or [I] [have] or [I] [’ve] ?
low-frequency → [low-frequency] or [low] [frequency] ?
Some arbitrary choices: be consistent!
Language-dependant!

9



Tokenization

• How to represent words as input?

“I’ve never seen a movie like this before”

• Split into tokens:

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]
• Issues for tokenization:

I’ve→ [I’ve] or [I] [have] or [I] [’ve] ?
low-frequency → [low-frequency] or [low] [frequency] ?
Some arbitrary choices: be consistent!
Language-dependant!

9



Tokenization

• How to represent words as input?

“I’ve never seen a movie like this before”

• Split into tokens:

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]
• Issues for tokenization:

I’ve→ [I’ve] or [I] [have] or [I] [’ve] ?

low-frequency → [low-frequency] or [low] [frequency] ?
Some arbitrary choices: be consistent!
Language-dependant!

9



Tokenization

• How to represent words as input?

“I’ve never seen a movie like this before”

• Split into tokens:

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]
• Issues for tokenization:

I’ve→ [I’ve] or [I] [have] or [I] [’ve] ?
low-frequency → [low-frequency] or [low] [frequency] ?

Some arbitrary choices: be consistent!
Language-dependant!

9



Tokenization

• How to represent words as input?

“I’ve never seen a movie like this before”

• Split into tokens:

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]
• Issues for tokenization:

I’ve→ [I’ve] or [I] [have] or [I] [’ve] ?
low-frequency → [low-frequency] or [low] [frequency] ?
Some arbitrary choices: be consistent!

Language-dependant!

9



Tokenization

• How to represent words as input?

“I’ve never seen a movie like this before”

• Split into tokens:

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]
• Issues for tokenization:

I’ve→ [I’ve] or [I] [have] or [I] [’ve] ?
low-frequency → [low-frequency] or [low] [frequency] ?
Some arbitrary choices: be consistent!
Language-dependant!

9



One-hot encoding

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]

[3, 7, 8, 0, 6, 5, 9, 1]

. The values associated with each word are meaningless: words with a
contiguous subscript are typically unrelated.

. Solution: vectorize!

10



One-hot encoding

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]

[3, 7, 8, 0, 6, 5, 9, 1]

. The values associated with each word are meaningless: words with a
contiguous subscript are typically unrelated.

. Solution: vectorize!

10



One-hot encoding

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]

[3, 7, 8, 0, 6, 5, 9, 1]

. The values associated with each word are meaningless: words with a
contiguous subscript are typically unrelated.

. Solution: vectorize!

10



One-hot encoding

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]

[3, 7, 8, 0, 6, 5, 9, 1]

. The values associated with each word are meaningless: words with a
contiguous subscript are typically unrelated.

. Solution: vectorize!

10



One-hot encoding

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]

[3, 7, 8, 0, 6, 5, 9, 1]

• Each word has its own dimension. Limits: size!
Example

• Dictionary of 80 000 words, text of 300 words

• Memory: 24.106 parameters to store the text!

11



One-hot encoding

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]

[3, 7, 8, 0, 6, 5, 9, 1]

• Each word has its own dimension. Limits: size!
Example

• Dictionary of 80 000 words, text of 300 words

• Memory: 24.106 parameters to store the text!

11



One-hot encoding

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]

[3, 7, 8, 0, 6, 5, 9, 1]

• Each word has its own dimension. Limits: size!

Example

• Dictionary of 80 000 words, text of 300 words

• Memory: 24.106 parameters to store the text!

11



One-hot encoding

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]

[3, 7, 8, 0, 6, 5, 9, 1]

• Each word has its own dimension. Limits: size!
Example

• Dictionary of 80 000 words, text of 300 words

• Memory: 24.106 parameters to store the text!

11



One-hot encoding

[“I’ve”, “never”,“seen”, “a”,“movie”, “like”, “this”, “before”]

[3, 7, 8, 0, 6, 5, 9, 1]

• Each word has its own dimension. Limits: size!
Example

• Dictionary of 80 000 words, text of 300 words

• Memory: 24.106 parameters to store the text!

11



One-hot vector

• 1 if word is present in the sentence

• Size does not depend on length of the sentence

• But: lose the words order

12



One-hot vector

• 1 if word is present in the sentence

• Size does not depend on length of the sentence

• But: lose the words order

12



One-hot vector

• 1 if word is present in the sentence

• Size does not depend on length of the sentence

• But: lose the words order

12



Embedding layer

• Goal: sparse word vector→ short dense vector.

• Learned for a classification task: one layer of a neural network.

• Size of the embedding: hyperparameter

Example

• Text of 300 words

• Embedding size: 200

• Memory: 60 000 parameters to store the text!

13



Embedding layer

• Goal: sparse word vector→ short dense vector.

• Learned for a classification task: one layer of a neural network.

• Size of the embedding: hyperparameter

Example

• Text of 300 words

• Embedding size: 200

• Memory: 60 000 parameters to store the text!

13



Embedding layer

• Goal: sparse word vector→ short dense vector.

• Learned for a classification task: one layer of a neural network.

• Size of the embedding: hyperparameter

Example

• Text of 300 words

• Embedding size: 200

• Memory: 60 000 parameters to store the text!

13



Embedding layer

• Goal: sparse word vector→ short dense vector.

• Learned for a classification task: one layer of a neural network.

• Size of the embedding: hyperparameter

Example

• Text of 300 words

• Embedding size: 200

• Memory: 60 000 parameters to store the text!

13



Word embedding

• Goal: obtain a word embedding with semantic meaning (and not on a
classification task)

• Word2Vec (Mikolov et al., 2013)
• Dictionaries built from large corpora are open-source:

Continuous Bag-of-Words (CBOW)
Skip-Gram (SG)

14



Word embedding

• Goal: obtain a word embedding with semantic meaning (and not on a
classification task)

• Word2Vec (Mikolov et al., 2013)

• Dictionaries built from large corpora are open-source:

Continuous Bag-of-Words (CBOW)
Skip-Gram (SG)

14



Word embedding

• Goal: obtain a word embedding with semantic meaning (and not on a
classification task)

• Word2Vec (Mikolov et al., 2013)
• Dictionaries built from large corpora are open-source:

Continuous Bag-of-Words (CBOW)
Skip-Gram (SG)

14



Word embedding

• Goal: obtain a word embedding with semantic meaning (and not on a
classification task)

• Word2Vec (Mikolov et al., 2013)
• Dictionaries built from large corpora are open-source:

Continuous Bag-of-Words (CBOW)

Skip-Gram (SG)

14



Word embedding

• Goal: obtain a word embedding with semantic meaning (and not on a
classification task)

• Word2Vec (Mikolov et al., 2013)
• Dictionaries built from large corpora are open-source:

Continuous Bag-of-Words (CBOW)
Skip-Gram (SG)

14



CBOW

source: fidle-cnrs

• Objective: find a word from its context

15



Skip-Gram

source: fidle-cnrs

• Objective: find the context from a word

16



Sommaire

Word representation

Recurrent NN

Transformers

17



Recall: neural networks

source: fidle-cnrs

• Cascade of linear and nonlinear functions
• Formally

ŷ = σ (WLσ (WL−1σ (. . . σ (W1x))))

18



Recall: neural networks

source: fidle-cnrs

• Cascade of linear and nonlinear functions

• Formally
ŷ = σ (WLσ (WL−1σ (. . . σ (W1x))))

18



Recall: neural networks

source: fidle-cnrs

• Cascade of linear and nonlinear functions
• Formally

ŷ = σ (WLσ (WL−1σ (. . . σ (W1x))))

18



Recurrent neural networks

• Recurrent Neural Networks (RNNs) are Artificial Neural Networks that
can deal with sequences of variable size.

19



Different uses of recurrent neural networks

• Image classification (one-to-one)

• Image Captioning (one-to-many): image/sequence of words

• Sentiment classification (many-to-one): sequence of words/sentiment

• Translation (many-to-many): sequence of words/sequence of words

• Video classification on frame level (many-to-many): sequence of
image/sequence of label

20



Different uses of recurrent neural networks

• Image classification (one-to-one)

• Image Captioning (one-to-many): image/sequence of words

• Sentiment classification (many-to-one): sequence of words/sentiment

• Translation (many-to-many): sequence of words/sequence of words

• Video classification on frame level (many-to-many): sequence of
image/sequence of label

20



Different uses of recurrent neural networks

• Image classification (one-to-one)

• Image Captioning (one-to-many): image/sequence of words

• Sentiment classification (many-to-one): sequence of words/sentiment

• Translation (many-to-many): sequence of words/sequence of words

• Video classification on frame level (many-to-many): sequence of
image/sequence of label

20



Different uses of recurrent neural networks

• Image classification (one-to-one)

• Image Captioning (one-to-many): image/sequence of words

• Sentiment classification (many-to-one): sequence of words/sentiment

• Translation (many-to-many): sequence of words/sequence of words

• Video classification on frame level (many-to-many): sequence of
image/sequence of label

20



Different uses of recurrent neural networks

• Image classification (one-to-one)

• Image Captioning (one-to-many): image/sequence of words

• Sentiment classification (many-to-one): sequence of words/sentiment

• Translation (many-to-many): sequence of words/sequence of words

• Video classification on frame level (many-to-many): sequence of
image/sequence of label

20



Language generating NN: training

How to learn “The cat is in the kitchen drinking milk.”?

• Learn: P (next word|current word and past)

• Represent the past as a feature vector

21



Language generating NN: training

How to learn “The cat is in the kitchen drinking milk.”?

• Learn: P (next word|current word and past)

• Represent the past as a feature vector

21



Language generating NN: training

How to learn “The cat is in the kitchen drinking milk.”?

• Learn: P (next word|current word and past)

• Represent the past as a feature vector

21



Language generating NN: training

How to learn “The cat is in the kitchen drinking milk.”?

• Learn: P (next word|current word and past)

• Represent the past as a feature vector

21



Language generating NN: training

How to learn “The cat is in the kitchen drinking milk.”?

• Learn: P (next word|current word and past)

• Represent the past as a feature vector

• Learn also how to represent the current sentence

• Repeat for the next word

22



Language generating NN: training

• Add two words: START and STOP to delimitate the sentence

• Learn everything end-to-end on a large corpus of sentences
• Minimize the sum of the cross-entropy of each word
• Intermediate features will learn how to memorize the past/context/state

. How should the network architecture and size of intermediate features
evolve with the location in the sequence?

23



Language generating NN: training

• Add two words: START and STOP to delimitate the sentence
• Learn everything end-to-end on a large corpus of sentences

• Minimize the sum of the cross-entropy of each word
• Intermediate features will learn how to memorize the past/context/state

. How should the network architecture and size of intermediate features
evolve with the location in the sequence?

23



Language generating NN: training

• Add two words: START and STOP to delimitate the sentence
• Learn everything end-to-end on a large corpus of sentences
• Minimize the sum of the cross-entropy of each word

• Intermediate features will learn how to memorize the past/context/state

. How should the network architecture and size of intermediate features
evolve with the location in the sequence?

23



Language generating NN: training

• Add two words: START and STOP to delimitate the sentence
• Learn everything end-to-end on a large corpus of sentences
• Minimize the sum of the cross-entropy of each word
• Intermediate features will learn how to memorize the past/context/state

. How should the network architecture and size of intermediate features
evolve with the location in the sequence?

23



Language generating NN: training

• Add two words: START and STOP to delimitate the sentence
• Learn everything end-to-end on a large corpus of sentences
• Minimize the sum of the cross-entropy of each word
• Intermediate features will learn how to memorize the past/context/state

. How should the network architecture and size of intermediate features
evolve with the location in the sequence?

23



Language generating NN: training

from Charles Deledalle’s lectures

• Use the same networks and the same feature dimension

• The past is always embedded in a fix-sized feature
• Set the first feature as a zero tensor

. Allows you to learn from arbitrarily long sequences

. Sharing the architecture⇒ fewer parameters⇒ training requires less
data and the final prediction can be expected to be more accurate

24



Language generating NN: training

from Charles Deledalle’s lectures

• Use the same networks and the same feature dimension
• The past is always embedded in a fix-sized feature

• Set the first feature as a zero tensor

. Allows you to learn from arbitrarily long sequences

. Sharing the architecture⇒ fewer parameters⇒ training requires less
data and the final prediction can be expected to be more accurate

24



Language generating NN: training

from Charles Deledalle’s lectures

• Use the same networks and the same feature dimension
• The past is always embedded in a fix-sized feature
• Set the first feature as a zero tensor

. Allows you to learn from arbitrarily long sequences

. Sharing the architecture⇒ fewer parameters⇒ training requires less
data and the final prediction can be expected to be more accurate

24



Language generating NN: training

from Charles Deledalle’s lectures

• Use the same networks and the same feature dimension
• The past is always embedded in a fix-sized feature
• Set the first feature as a zero tensor

. Allows you to learn from arbitrarily long sequences

. Sharing the architecture⇒ fewer parameters⇒ training requires less
data and the final prediction can be expected to be more accurate

24



Language generating NN: training

from Charles Deledalle’s lectures

• Use the same networks and the same feature dimension
• The past is always embedded in a fix-sized feature
• Set the first feature as a zero tensor

. Allows you to learn from arbitrarily long sequences

. Sharing the architecture⇒ fewer parameters⇒ training requires less
data and the final prediction can be expected to be more accurate

24



A simple shallow RNN for sentence generation

• This is an unfolded representation of an RNN

Vanilla RNN

ht = g (Whxxt + Whhht−1 + bh)

yt = softmax (Wyhht + by)

• Folded representation: RNN ≈ ANN with
loops

25



A simple shallow RNN for sentence generation

• This is an unfolded representation of an RNN

Vanilla RNN

ht = g (Whxxt + Whhht−1 + bh)

yt = softmax (Wyhht + by)

• Folded representation: RNN ≈ ANN with
loops

25



A simple shallow RNN for sentence generation

• This is an unfolded representation of an RNN

Vanilla RNN

ht = g (Whxxt + Whhht−1 + bh)

yt = softmax (Wyhht + by)

• Folded representation: RNN ≈ ANN with
loops 25



Generate a sentence in practice

• Provide START, get all the probabilities
P (next word|current word = START)

• Select one of these words according to their probabilities, let say ‘A’,
• Provide ‘A’ and the past, and get P (next word|current word = A)
• Repeat while generating the sentence ‘A dog plays with a ball’
• Stop as soon as you have picked STOP.

26



Generate a sentence in practice

• Provide START, get all the probabilities
P (next word|current word = START)

• Select one of these words according to their probabilities, let say ‘A’,

• Provide ‘A’ and the past, and get P (next word|current word = A)
• Repeat while generating the sentence ‘A dog plays with a ball’
• Stop as soon as you have picked STOP.

26



Generate a sentence in practice

• Provide START, get all the probabilities
P (next word|current word = START)

• Select one of these words according to their probabilities, let say ‘A’,
• Provide ‘A’ and the past, and get P (next word|current word = A)

• Repeat while generating the sentence ‘A dog plays with a ball’
• Stop as soon as you have picked STOP.

26



Generate a sentence in practice

• Provide START, get all the probabilities
P (next word|current word = START)

• Select one of these words according to their probabilities, let say ‘A’,
• Provide ‘A’ and the past, and get P (next word|current word = A)
• Repeat while generating the sentence ‘A dog plays with a ball’

• Stop as soon as you have picked STOP.

26



Generate a sentence in practice

• Provide START, get all the probabilities
P (next word|current word = START)

• Select one of these words according to their probabilities, let say ‘A’,
• Provide ‘A’ and the past, and get P (next word|current word = A)
• Repeat while generating the sentence ‘A dog plays with a ball’
• Stop as soon as you have picked STOP.

26



Bidirectional RNN

• Output at time t may not only depend on the previous elements, but
also on future elements

Bidirectional RNN

ht = g
(

Whxxt + W forward
hh ht−1 + W backward

hh ht+1 + bh

)
yt = softmax (Wyhht + by)

27



Bidirectional RNN

• Output at time t may not only depend on the previous elements, but
also on future elements

Bidirectional RNN

ht = g
(

Whxxt + W forward
hh ht−1 + W backward

hh ht+1 + bh

)
yt = softmax (Wyhht + by)

27



Bidirectional RNN

• Output at time t may not only depend on the previous elements, but
also on future elements

Bidirectional RNN

ht = g
(

Whxxt + W forward
hh ht−1 + W backward

hh ht+1 + bh

)
yt = softmax (Wyhht + by)

27



Deep RNN

• Multiple layers per time step (a feature hierarchy)

• Higher learning capacity
• Requires a lot more training data

28



Deep RNN

• Multiple layers per time step (a feature hierarchy)
• Higher learning capacity

• Requires a lot more training data

28



Deep RNN

• Multiple layers per time step (a feature hierarchy)
• Higher learning capacity
• Requires a lot more training data

28



Learning phase for RNN

• Similar to standard backprop for training a traditional NN

• Take into account that parameters are shared by all steps in the network

• Forward through the entire sequence to compute the loss

• Backward through the entire sequence to compute gradients

29



Learning phase for RNN

• Similar to standard backprop for training a traditional NN

• Take into account that parameters are shared by all steps in the network

• Forward through the entire sequence to compute the loss

• Backward through the entire sequence to compute gradients

29



Learning phase for RNN

• Similar to standard backprop for training a traditional NN

• Take into account that parameters are shared by all steps in the network

• Forward through the entire sequence to compute the loss

• Backward through the entire sequence to compute gradients

29



Learning phase for RNN

• Similar to standard backprop for training a traditional NN

• Take into account that parameters are shared by all steps in the network

• Forward through the entire sequence to compute the loss

• Backward through the entire sequence to compute gradients

29



Language generating RNN: limitations

• Vanilla RNN have difficulties learning long-term dependencies

I grew up in France ... I speak fluent ???
(we need the context of France from further back)

• Vanishing/exploding gradient problem∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥︸ ︷︷ ︸
‖W>

hhdiag
(
σ′(Whhht−1+Wxhxt

))
‖

∼ η ⇒
∥∥∥∥∂hT

∂hk

∥∥∥∥ =

∥∥∥∥∥
T∏

t=k+1

∂ht

∂ht−1

∥∥∥∥∥ ∼ ηT−k

• As T − k increases, the contribution of the k-th term to the gradient
decreases exponentially fast

• Certain types of RNNs are specifically designed to get around them

30



Language generating RNN: limitations

• Vanilla RNN have difficulties learning long-term dependencies

I grew up in France ... I speak fluent ???
(we need the context of France from further back)

• Vanishing/exploding gradient problem∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥︸ ︷︷ ︸
‖W>

hhdiag
(
σ′(Whhht−1+Wxhxt

))
‖

∼ η ⇒
∥∥∥∥∂hT

∂hk

∥∥∥∥ =

∥∥∥∥∥
T∏

t=k+1

∂ht

∂ht−1

∥∥∥∥∥ ∼ ηT−k

• As T − k increases, the contribution of the k-th term to the gradient
decreases exponentially fast

• Certain types of RNNs are specifically designed to get around them

30



Language generating RNN: limitations

• Vanilla RNN have difficulties learning long-term dependencies

I grew up in France ... I speak fluent ???
(we need the context of France from further back)

• Vanishing/exploding gradient problem∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥︸ ︷︷ ︸
‖W>

hhdiag
(
σ′(Whhht−1+Wxhxt

))
‖

∼ η ⇒
∥∥∥∥∂hT

∂hk

∥∥∥∥ =

∥∥∥∥∥
T∏

t=k+1

∂ht

∂ht−1

∥∥∥∥∥ ∼ ηT−k

• As T − k increases, the contribution of the k-th term to the gradient
decreases exponentially fast

• Certain types of RNNs are specifically designed to get around them

30



Language generating RNN: limitations

• Vanilla RNN have difficulties learning long-term dependencies

I grew up in France ... I speak fluent ???
(we need the context of France from further back)

• Vanishing/exploding gradient problem∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥︸ ︷︷ ︸
‖W>

hhdiag
(
σ′(Whhht−1+Wxhxt

))
‖

∼ η ⇒
∥∥∥∥∂hT

∂hk

∥∥∥∥ =

∥∥∥∥∥
T∏

t=k+1

∂ht

∂ht−1

∥∥∥∥∥ ∼ ηT−k

• As T − k increases, the contribution of the k-th term to the gradient
decreases exponentially fast

• Certain types of RNNs are specifically designed to get around them

30



GRU (Gated Recurrent Unit)

• Interpreting the hidden state as the memory of a recurrent unit, decide
whether certain units are worth memorizing (in which case the state is
updated), and others are worth forgetting (in which case the state is
reset)

• Define two gating operations, called ”reset” and ”update”:

rt = σ (Wrxxt + Wrhht−1) zt = σ (Wzxxt + Wzhht−1)

• Instead of ht = σ (Whxxt + Whhht−1), consider

h̃t = σ (Whxxt + Whh (ht−1 � rt))

If the reset gate ' 1, then this looks like a regular RNN unit (i.e., we retain
memory)
If the reset gate ' 0, then this looks like a regular perceptron/dense layer
(i.e., we forget)

• the update gate tells us how much memory retention versus forgetting
needs to happen

ht = ht−1 � zt + h̃t � (1 − zt)

31



GRU (Gated Recurrent Unit)

• Interpreting the hidden state as the memory of a recurrent unit, decide
whether certain units are worth memorizing (in which case the state is
updated), and others are worth forgetting (in which case the state is
reset)

• Define two gating operations, called ”reset” and ”update”:

rt = σ (Wrxxt + Wrhht−1) zt = σ (Wzxxt + Wzhht−1)

• Instead of ht = σ (Whxxt + Whhht−1), consider

h̃t = σ (Whxxt + Whh (ht−1 � rt))

If the reset gate ' 1, then this looks like a regular RNN unit (i.e., we retain
memory)
If the reset gate ' 0, then this looks like a regular perceptron/dense layer
(i.e., we forget)

• the update gate tells us how much memory retention versus forgetting
needs to happen

ht = ht−1 � zt + h̃t � (1 − zt)

31



GRU (Gated Recurrent Unit)

• Interpreting the hidden state as the memory of a recurrent unit, decide
whether certain units are worth memorizing (in which case the state is
updated), and others are worth forgetting (in which case the state is
reset)

• Define two gating operations, called ”reset” and ”update”:

rt = σ (Wrxxt + Wrhht−1) zt = σ (Wzxxt + Wzhht−1)

• Instead of ht = σ (Whxxt + Whhht−1), consider

h̃t = σ (Whxxt + Whh (ht−1 � rt))

If the reset gate ' 1, then this looks like a regular RNN unit (i.e., we retain
memory)
If the reset gate ' 0, then this looks like a regular perceptron/dense layer
(i.e., we forget)

• the update gate tells us how much memory retention versus forgetting
needs to happen

ht = ht−1 � zt + h̃t � (1 − zt)

31



GRU (Gated Recurrent Unit)

• Interpreting the hidden state as the memory of a recurrent unit, decide
whether certain units are worth memorizing (in which case the state is
updated), and others are worth forgetting (in which case the state is
reset)

• Define two gating operations, called ”reset” and ”update”:

rt = σ (Wrxxt + Wrhht−1) zt = σ (Wzxxt + Wzhht−1)

• Instead of ht = σ (Whxxt + Whhht−1), consider

h̃t = σ (Whxxt + Whh (ht−1 � rt))

If the reset gate ' 1, then this looks like a regular RNN unit (i.e., we retain
memory)
If the reset gate ' 0, then this looks like a regular perceptron/dense layer
(i.e., we forget)

• the update gate tells us how much memory retention versus forgetting
needs to happen

ht = ht−1 � zt + h̃t � (1 − zt)

31



GRU (Gated Recurrent Unit)

• Interpreting the hidden state as the memory of a recurrent unit, decide
whether certain units are worth memorizing (in which case the state is
updated), and others are worth forgetting (in which case the state is
reset)

• Define two gating operations, called ”reset” and ”update”:

rt = σ (Wrxxt + Wrhht−1) zt = σ (Wzxxt + Wzhht−1)

• Instead of ht = σ (Whxxt + Whhht−1), consider

h̃t = σ (Whxxt + Whh (ht−1 � rt))

If the reset gate ' 1, then this looks like a regular RNN unit (i.e., we retain
memory)

If the reset gate ' 0, then this looks like a regular perceptron/dense layer
(i.e., we forget)

• the update gate tells us how much memory retention versus forgetting
needs to happen

ht = ht−1 � zt + h̃t � (1 − zt)

31



GRU (Gated Recurrent Unit)

• Interpreting the hidden state as the memory of a recurrent unit, decide
whether certain units are worth memorizing (in which case the state is
updated), and others are worth forgetting (in which case the state is
reset)

• Define two gating operations, called ”reset” and ”update”:

rt = σ (Wrxxt + Wrhht−1) zt = σ (Wzxxt + Wzhht−1)

• Instead of ht = σ (Whxxt + Whhht−1), consider

h̃t = σ (Whxxt + Whh (ht−1 � rt))

If the reset gate ' 1, then this looks like a regular RNN unit (i.e., we retain
memory)
If the reset gate ' 0, then this looks like a regular perceptron/dense layer
(i.e., we forget)

• the update gate tells us how much memory retention versus forgetting
needs to happen

ht = ht−1 � zt + h̃t � (1 − zt)

31



GRU (Gated Recurrent Unit)

• Interpreting the hidden state as the memory of a recurrent unit, decide
whether certain units are worth memorizing (in which case the state is
updated), and others are worth forgetting (in which case the state is
reset)

• Define two gating operations, called ”reset” and ”update”:

rt = σ (Wrxxt + Wrhht−1) zt = σ (Wzxxt + Wzhht−1)

• Instead of ht = σ (Whxxt + Whhht−1), consider

h̃t = σ (Whxxt + Whh (ht−1 � rt))

If the reset gate ' 1, then this looks like a regular RNN unit (i.e., we retain
memory)
If the reset gate ' 0, then this looks like a regular perceptron/dense layer
(i.e., we forget)

• the update gate tells us how much memory retention versus forgetting
needs to happen

ht = ht−1 � zt + h̃t � (1 − zt)

31



Long-Short Term Memory

ht = g (Whxxt + Whhht−1 + bh) (memory)

yt = softmax (Wyhht + by) (used as feature for prediction)

32



Long-Short Term Memory

gt = g (Wcxxt + Wchht−1 + bc) (input modulation gate)

ct = gt (place memory in a cell unit c)

ht = ct

yt = softmax (Wyhht + by) (use ht for prediction)

32



Long-Short Term Memory

gt = g (Wcxxt + Wchht−1 + bc) (input modulation gate)

ct = ct−1 + gt (the cell keeps track of long term)

ht = ct

yt = softmax (Wyhht + by)

32



Long-Short Term Memory

ft = sigm (Wfxxt + Wfhht−1 + bf ) (forget gate)

gt = g (Wcxxt + Wchht−1 + bc) (input modulation gate)

ct = ft � ct−1 + gt (but can forget some of its memories)

ht = ct

yt = softmax (Wyhht + by)

32



Long-Short Term Memory

it = sigm (Wixxt + Wihht−1 + bi) (input gate)

ft = sigm (Wfxxt + Wfhht−1 + bf ) (forget gate)

gt = g (Wcxxt + Wchht−1 + bc) (input modulation gate)

ct = ft � ct−1 + it � gt (but can forget some of its memories)

ht = ct

yt = softmax (Wyhht + by)

32



Long-Short Term Memory

ot = sigm (Woxxt + Wohht−1 + bo) (output gate)

it = sigm (Wixxt + Wihht−1 + bi) (input gate)

ft = sigm (Wfxxt + Wfhht−1 + bf ) (forget gate)

gt = g (Wcxxt + Wchht−1 + bc) (input modulation gate)

ct = ft � ct−1 + it � gt (but can forget some of its memories)

ht = ot � ct (weight memory for generating feature)

yt = softmax (Wyhht + by)

• There are many variants, but this is the general idea

32



Preparation of sequence data

• Can you predict the past with the future? Beware of splitting time series!

source: fidle-cnrs

33



Preparation of sequence data

• Can you predict the past with the future? Beware of splitting time series!

source: fidle-cnrs

33



Cross-validation for time series

34



Sommaire

Word representation

Recurrent NN

Transformers

35



Self-attention for what?

So far

• RNN maps a sequence to a single output or a sequence

• Self-attention maps a set of inputs {x1, . . . , xN} to a set of outputs
{y1, . . . , yN}

• This is an embedding

36



Self-attention for what?

So far

• RNN maps a sequence to a single output or a sequence

• Self-attention maps a set of inputs {x1, . . . , xN} to a set of outputs
{y1, . . . , yN}

• This is an embedding

36



Self-attention for what?

So far

• RNN maps a sequence to a single output or a sequence

• Self-attention maps a set of inputs {x1, . . . , xN} to a set of outputs
{y1, . . . , yN}

• This is an embedding

36



A preliminary version of self-attention

yi =

N∑
j=1

wijxj

• Each output is a weighted average of all inputs where the weights wij

are row-normalized such that they sum to 1

• The weights are directly derived from the inputs, e.g.

w′
ij = x>

i xj wij =
exp(w′

ij)∑
j′ exp(w′

ij′)

}
= softmax

(
(w′

ij)j
)

. Here, everything is deterministic, for now nothing is learned

. The operation is permutation-invariant (but this can be fixed, see later)

37



A preliminary version of self-attention

yi =

N∑
j=1

wijxj

• Each output is a weighted average of all inputs where the weights wij

are row-normalized such that they sum to 1

• The weights are directly derived from the inputs, e.g.

w′
ij = x>

i xj wij =
exp(w′

ij)∑
j′ exp(w′

ij′)

}
= softmax

(
(w′

ij)j
)

. Here, everything is deterministic, for now nothing is learned

. The operation is permutation-invariant (but this can be fixed, see later)

37



A preliminary version of self-attention

yi =

N∑
j=1

wijxj

• Each output is a weighted average of all inputs where the weights wij

are row-normalized such that they sum to 1

• The weights are directly derived from the inputs, e.g.

w′
ij = x>

i xj wij =
exp(w′

ij)∑
j′ exp(w′

ij′)

}
= softmax

(
(w′

ij)j
)

. Here, everything is deterministic, for now nothing is learned

. The operation is permutation-invariant (but this can be fixed, see later)

37



A preliminary version of self-attention

yi =

N∑
j=1

wijxj

• Each output is a weighted average of all inputs where the weights wij

are row-normalized such that they sum to 1

• The weights are directly derived from the inputs, e.g.

w′
ij = x>

i xj wij =
exp(w′

ij)∑
j′ exp(w′

ij′)

}
= softmax

(
(w′

ij)j
)

. Here, everything is deterministic, for now nothing is learned

. The operation is permutation-invariant (but this can be fixed, see later)

37



A preliminary version of self-attention

from http://peterbloem.nl/blog/transformers

• A few other ingredients are needed for a complete transformer
• But this is the only operation in the whole architecture that propagates
information between vectors

. Every other operation in the transformer is applied to each vector in the
input sequence without interactions between vectors

38

http://peterbloem.nl/blog/transformers


A preliminary version of self-attention

from http://peterbloem.nl/blog/transformers

• A few other ingredients are needed for a complete transformer

• But this is the only operation in the whole architecture that propagates
information between vectors

. Every other operation in the transformer is applied to each vector in the
input sequence without interactions between vectors

38

http://peterbloem.nl/blog/transformers


A preliminary version of self-attention

from http://peterbloem.nl/blog/transformers

• A few other ingredients are needed for a complete transformer
• But this is the only operation in the whole architecture that propagates
information between vectors

. Every other operation in the transformer is applied to each vector in the
input sequence without interactions between vectors

38

http://peterbloem.nl/blog/transformers


A preliminary version of self-attention

from http://peterbloem.nl/blog/transformers

• A few other ingredients are needed for a complete transformer
• But this is the only operation in the whole architecture that propagates
information between vectors

. Every other operation in the transformer is applied to each vector in the
input sequence without interactions between vectors

38

http://peterbloem.nl/blog/transformers


A preliminary version of self-attention

What’s the point?

• Restriction of self-attention to linear models

• Example of Neural Machine Translation (NMT)
• Task: translate ”the dog sat on the couch” from English to French

A lot of redundancy in natural languages
’the’ ’on’ are common, not informative, not correlated
’dog’ ’couch’ are similar, both nouns, can be grouped according to
subject-object relationships or subject-predicate relationships

• It would be useful if the model automatically “grouped” similar words
together

• Possible by the scalar products

39



A preliminary version of self-attention

What’s the point?

• Restriction of self-attention to linear models

• Example of Neural Machine Translation (NMT)

• Task: translate ”the dog sat on the couch” from English to French

A lot of redundancy in natural languages
’the’ ’on’ are common, not informative, not correlated
’dog’ ’couch’ are similar, both nouns, can be grouped according to
subject-object relationships or subject-predicate relationships

• It would be useful if the model automatically “grouped” similar words
together

• Possible by the scalar products

39



A preliminary version of self-attention

What’s the point?

• Restriction of self-attention to linear models

• Example of Neural Machine Translation (NMT)
• Task: translate ”the dog sat on the couch” from English to French

A lot of redundancy in natural languages
’the’ ’on’ are common, not informative, not correlated
’dog’ ’couch’ are similar, both nouns, can be grouped according to
subject-object relationships or subject-predicate relationships

• It would be useful if the model automatically “grouped” similar words
together

• Possible by the scalar products

39



A preliminary version of self-attention

What’s the point?

• Restriction of self-attention to linear models

• Example of Neural Machine Translation (NMT)
• Task: translate ”the dog sat on the couch” from English to French

A lot of redundancy in natural languages

’the’ ’on’ are common, not informative, not correlated
’dog’ ’couch’ are similar, both nouns, can be grouped according to
subject-object relationships or subject-predicate relationships

• It would be useful if the model automatically “grouped” similar words
together

• Possible by the scalar products

39



A preliminary version of self-attention

What’s the point?

• Restriction of self-attention to linear models

• Example of Neural Machine Translation (NMT)
• Task: translate ”the dog sat on the couch” from English to French

A lot of redundancy in natural languages
’the’ ’on’ are common, not informative, not correlated

’dog’ ’couch’ are similar, both nouns, can be grouped according to
subject-object relationships or subject-predicate relationships

• It would be useful if the model automatically “grouped” similar words
together

• Possible by the scalar products

39



A preliminary version of self-attention

What’s the point?

• Restriction of self-attention to linear models

• Example of Neural Machine Translation (NMT)
• Task: translate ”the dog sat on the couch” from English to French

A lot of redundancy in natural languages
’the’ ’on’ are common, not informative, not correlated
’dog’ ’couch’ are similar, both nouns, can be grouped according to
subject-object relationships or subject-predicate relationships

• It would be useful if the model automatically “grouped” similar words
together

• Possible by the scalar products

39



A preliminary version of self-attention

What’s the point?

• Restriction of self-attention to linear models

• Example of Neural Machine Translation (NMT)
• Task: translate ”the dog sat on the couch” from English to French

A lot of redundancy in natural languages
’the’ ’on’ are common, not informative, not correlated
’dog’ ’couch’ are similar, both nouns, can be grouped according to
subject-object relationships or subject-predicate relationships

• It would be useful if the model automatically “grouped” similar words
together

• Possible by the scalar products

39



A preliminary version of self-attention

What’s the point?

• Restriction of self-attention to linear models

• Example of Neural Machine Translation (NMT)
• Task: translate ”the dog sat on the couch” from English to French

A lot of redundancy in natural languages
’the’ ’on’ are common, not informative, not correlated
’dog’ ’couch’ are similar, both nouns, can be grouped according to
subject-object relationships or subject-predicate relationships

• It would be useful if the model automatically “grouped” similar words
together

• Possible by the scalar products

39



A preliminary version of self-attention

Another example: movie recommendation

1. create manual features for movies and for users

how much romance there is in the movie, and how much action,
how much they enjoy romantic movies and how much they enjoy
action-based movies

2. The dot product between the two feature vectors gives a score for how
well the attributes of the movie match what the user enjoys

3. Replace user feature u by movies that she liked

Dot product ≈ relations between objects

40



A preliminary version of self-attention

Another example: movie recommendation

1. create manual features for movies and for users
how much romance there is in the movie, and how much action,

how much they enjoy romantic movies and how much they enjoy
action-based movies

2. The dot product between the two feature vectors gives a score for how
well the attributes of the movie match what the user enjoys

3. Replace user feature u by movies that she liked

Dot product ≈ relations between objects

40



A preliminary version of self-attention

Another example: movie recommendation

1. create manual features for movies and for users
how much romance there is in the movie, and how much action,
how much they enjoy romantic movies and how much they enjoy
action-based movies

2. The dot product between the two feature vectors gives a score for how
well the attributes of the movie match what the user enjoys

3. Replace user feature u by movies that she liked

Dot product ≈ relations between objects

40



A preliminary version of self-attention

Another example: movie recommendation

1. create manual features for movies and for users
how much romance there is in the movie, and how much action,
how much they enjoy romantic movies and how much they enjoy
action-based movies

2. The dot product between the two feature vectors gives a score for how
well the attributes of the movie match what the user enjoys

3. Replace user feature u by movies that she liked

Dot product ≈ relations between objects

40



A preliminary version of self-attention

Another example: movie recommendation

1. create manual features for movies and for users
how much romance there is in the movie, and how much action,
how much they enjoy romantic movies and how much they enjoy
action-based movies

2. The dot product between the two feature vectors gives a score for how
well the attributes of the movie match what the user enjoys

3. Replace user feature u by movies that she liked

Dot product ≈ relations between objects

40



A preliminary version of self-attention

Another example: movie recommendation

1. create manual features for movies and for users
how much romance there is in the movie, and how much action,
how much they enjoy romantic movies and how much they enjoy
action-based movies

2. The dot product between the two feature vectors gives a score for how
well the attributes of the movie match what the user enjoys

3. Replace user feature u by movies that she liked

Dot product ≈ relations between objects

40



A step further

Going back to the NMT example:

• Input: a sequence of words x1, . . . xN

• Embedding layer: apply to each word xi an embedding vi (the values
that we will learn)
. Learning the values vi is learning how ”related” two words are
. Entirely determined by the learning task

Example: ”The dog sleeps on the couch”

• ’The’: not very relevant to the interpretation of the other words in the
sentence

. Desire 1: the embedding vThe should have a zero or negative scalar
product with the other words

• Helpful to interpret who sleeps

. Desire 2: for nouns like ’dog’ and verbs like ’sleeps’, learn an
embedding vdog and vsleeps that have a high, positive dot product

41



A step further

Going back to the NMT example:

• Input: a sequence of words x1, . . . xN

• Embedding layer: apply to each word xi an embedding vi (the values
that we will learn)

. Learning the values vi is learning how ”related” two words are

. Entirely determined by the learning task

Example: ”The dog sleeps on the couch”

• ’The’: not very relevant to the interpretation of the other words in the
sentence

. Desire 1: the embedding vThe should have a zero or negative scalar
product with the other words

• Helpful to interpret who sleeps

. Desire 2: for nouns like ’dog’ and verbs like ’sleeps’, learn an
embedding vdog and vsleeps that have a high, positive dot product

41



A step further

Going back to the NMT example:

• Input: a sequence of words x1, . . . xN

• Embedding layer: apply to each word xi an embedding vi (the values
that we will learn)
. Learning the values vi is learning how ”related” two words are

. Entirely determined by the learning task

Example: ”The dog sleeps on the couch”

• ’The’: not very relevant to the interpretation of the other words in the
sentence

. Desire 1: the embedding vThe should have a zero or negative scalar
product with the other words

• Helpful to interpret who sleeps

. Desire 2: for nouns like ’dog’ and verbs like ’sleeps’, learn an
embedding vdog and vsleeps that have a high, positive dot product

41



A step further

Going back to the NMT example:

• Input: a sequence of words x1, . . . xN

• Embedding layer: apply to each word xi an embedding vi (the values
that we will learn)
. Learning the values vi is learning how ”related” two words are
. Entirely determined by the learning task

Example: ”The dog sleeps on the couch”

• ’The’: not very relevant to the interpretation of the other words in the
sentence

. Desire 1: the embedding vThe should have a zero or negative scalar
product with the other words

• Helpful to interpret who sleeps

. Desire 2: for nouns like ’dog’ and verbs like ’sleeps’, learn an
embedding vdog and vsleeps that have a high, positive dot product

41



A step further

Going back to the NMT example:

• Input: a sequence of words x1, . . . xN

• Embedding layer: apply to each word xi an embedding vi (the values
that we will learn)
. Learning the values vi is learning how ”related” two words are
. Entirely determined by the learning task

Example: ”The dog sleeps on the couch”

• ’The’: not very relevant to the interpretation of the other words in the
sentence

. Desire 1: the embedding vThe should have a zero or negative scalar
product with the other words

• Helpful to interpret who sleeps

. Desire 2: for nouns like ’dog’ and verbs like ’sleeps’, learn an
embedding vdog and vsleeps that have a high, positive dot product

41



A step further

Going back to the NMT example:

• Input: a sequence of words x1, . . . xN

• Embedding layer: apply to each word xi an embedding vi (the values
that we will learn)
. Learning the values vi is learning how ”related” two words are
. Entirely determined by the learning task

Example: ”The dog sleeps on the couch”

• ’The’: not very relevant to the interpretation of the other words in the
sentence

. Desire 1: the embedding vThe should have a zero or negative scalar
product with the other words

• Helpful to interpret who sleeps

. Desire 2: for nouns like ’dog’ and verbs like ’sleeps’, learn an
embedding vdog and vsleeps that have a high, positive dot product

41



A step further

Going back to the NMT example:

• Input: a sequence of words x1, . . . xN

• Embedding layer: apply to each word xi an embedding vi (the values
that we will learn)
. Learning the values vi is learning how ”related” two words are
. Entirely determined by the learning task

Example: ”The dog sleeps on the couch”

• ’The’: not very relevant to the interpretation of the other words in the
sentence

. Desire 1: the embedding vThe should have a zero or negative scalar
product with the other words

• Helpful to interpret who sleeps

. Desire 2: for nouns like ’dog’ and verbs like ’sleeps’, learn an
embedding vdog and vsleeps that have a high, positive dot product

41



A step further

Going back to the NMT example:

• Input: a sequence of words x1, . . . xN

• Embedding layer: apply to each word xi an embedding vi (the values
that we will learn)
. Learning the values vi is learning how ”related” two words are
. Entirely determined by the learning task

Example: ”The dog sleeps on the couch”

• ’The’: not very relevant to the interpretation of the other words in the
sentence

. Desire 1: the embedding vThe should have a zero or negative scalar
product with the other words

• Helpful to interpret who sleeps

. Desire 2: for nouns like ’dog’ and verbs like ’sleeps’, learn an
embedding vdog and vsleeps that have a high, positive dot product

41



Learning the embedding: attention weights

• Showing the scalar products between the learned embedding v
• As we are encoding the word ”it”, part of the attention mechanism was
focusing on ”the animal”

42



Towards a real self-attention layer

In the toy self-attention version, every input vector xi is used in three
different ways in the self attention operation

w′
ij = xi

>xj, wij = softmax((w′
ij)j), yi =

N∑
j=1

wijxj

• (Query) xi is compared to every other vector to establish the weights for
its own output yi

• (Key) xi is compared to every other vector to establish the weights for
the output of the j-th vector yj

• (Value) xi is used as part of the weighted sum to compute each output
vector once the weights have been established.

These three roles are called the query, key, and value.

43



Towards a real self-attention layer

In the toy self-attention version, every input vector xi is used in three
different ways in the self attention operation

w′
ij = xi

>xj, wij = softmax((w′
ij)j), yi =

N∑
j=1

wijxj

• (Query) xi is compared to every other vector to establish the weights for
its own output yi

• (Key) xi is compared to every other vector to establish the weights for
the output of the j-th vector yj

• (Value) xi is used as part of the weighted sum to compute each output
vector once the weights have been established.

These three roles are called the query, key, and value.

43



Towards a real self-attention layer

In the toy self-attention version, every input vector xi is used in three
different ways in the self attention operation

w′
ij = xi

>xj, wij = softmax((w′
ij)j), yi =

N∑
j=1

wijxj

• (Query) xi is compared to every other vector to establish the weights for
its own output yi

• (Key) xi is compared to every other vector to establish the weights for
the output of the j-th vector yj

• (Value) xi is used as part of the weighted sum to compute each output
vector once the weights have been established.

These three roles are called the query, key, and value.

43



Towards a real self-attention layer

In the toy self-attention version, every input vector xi is used in three
different ways in the self attention operation

w′
ij = xi

>xj, wij = softmax((w′
ij)j), yi =

N∑
j=1

wijxj

• (Query) xi is compared to every other vector to establish the weights for
its own output yi

• (Key) xi is compared to every other vector to establish the weights for
the output of the j-th vector yj

• (Value) xi is used as part of the weighted sum to compute each output
vector once the weights have been established.

These three roles are called the query, key, and value.

43



Towards a real self-attention layer

In the toy self-attention version, every input vector xi is used in three
different ways in the self attention operation

w′
ij = xi

>xj, wij = softmax((w′
ij)j), yi =

N∑
j=1

wijxj

• (Query) xi is compared to every other vector to establish the weights for
its own output yi

• (Key) xi is compared to every other vector to establish the weights for
the output of the j-th vector yj

• (Value) xi is used as part of the weighted sum to compute each output
vector once the weights have been established.

These three roles are called the query, key, and value.

43



Towards a real self-attention layer

Make these roles distinct by adding a few dummy variables:

qi = xi (Query)

ki = xi (Key)

vi = xi (Value)

and then write out the output as:

w′
ij = q>

i kj wij = softmax((w′
ij)j) yi =

N∑
j=1

wijvj

Then, we can use learnable parameters for each of these roles, for instance:

qi = Wqxi (Query)

ki = Wkxi (Key)

vi = Wvxi (Value)

where Wq , Wk , Wv are learnable projection matrices that defines the roles
of each data point

44



Towards a real self-attention layer

Make these roles distinct by adding a few dummy variables:

qi = xi (Query)

ki = xi (Key)

vi = xi (Value)

and then write out the output as:

w′
ij = q>

i kj wij = softmax((w′
ij)j) yi =

N∑
j=1

wijvj

Then, we can use learnable parameters for each of these roles, for instance:

qi = Wqxi (Query)

ki = Wkxi (Key)

vi = Wvxi (Value)

where Wq , Wk , Wv are learnable projection matrices that defines the roles
of each data point

44



Towards a real self-attention layer

Make these roles distinct by adding a few dummy variables:

qi = xi (Query)

ki = xi (Key)

vi = xi (Value)

and then write out the output as:

w′
ij = q>

i kj wij = softmax((w′
ij)j) yi =

N∑
j=1

wijvj

Then, we can use learnable parameters for each of these roles, for instance:

qi = Wqxi (Query)

ki = Wkxi (Key)

vi = Wvxi (Value)

where Wq , Wk , Wv are learnable projection matrices that defines the roles
of each data point

44



An attention head

from http://peterbloem.nl/blog/transformers

Figure 1: Illustration of the self-attention with key, query and value transformations

45

http://peterbloem.nl/blog/transformers


Scaling the dot product

• The dot product in attention weights is usually scaled

w′
ij =

1√
dimension of the embedding

q>
i kj

where dimension of the embedding = size of qi, ki, vi

• The softmax function can be sensitive to very large input values

 vanishing gradient / slow training

• The average value of the dot product grows with the embedding
dimension

46



Scaling the dot product

• The dot product in attention weights is usually scaled

w′
ij =

1√
dimension of the embedding

q>
i kj

where dimension of the embedding = size of qi, ki, vi

• The softmax function can be sensitive to very large input values

 vanishing gradient / slow training

• The average value of the dot product grows with the embedding
dimension

46



Scaling the dot product

• The dot product in attention weights is usually scaled

w′
ij =

1√
dimension of the embedding

q>
i kj

where dimension of the embedding = size of qi, ki, vi

• The softmax function can be sensitive to very large input values

 vanishing gradient / slow training

• The average value of the dot product grows with the embedding
dimension

46



Multi-head self attention layer

• Concatenate different self-attention mechanisms to give it more
flexibility

• Index each head with r = 1, 2, . . .

qr
i = W r

q xi kr
i = W r

k xi vr
i = W r

v xi

(w′)r
ij = (qr

i )
>kr

j wr
ij = softmax((w′)r

ij)) yr
i =

N∑
j=1

wr
ijvr

j

yi = Wyconcat
(

y1
i , y2

i , . . .
)

(y1, . . . , yN) = Attn (x1, . . . , xN)

• Trick to reduce dimension: use lower-dimensional matrices W r
q , W r

k

and W r
v : dim(x)× h intead of dim(x)× dim(x)

47



Multi-head self attention layer

• Concatenate different self-attention mechanisms to give it more
flexibility

• Index each head with r = 1, 2, . . .

qr
i = W r

q xi kr
i = W r

k xi vr
i = W r

v xi

(w′)r
ij = (qr

i )
>kr

j wr
ij = softmax((w′)r

ij)) yr
i =

N∑
j=1

wr
ijvr

j

yi = Wyconcat
(

y1
i , y2

i , . . .
)

(y1, . . . , yN) = Attn (x1, . . . , xN)

• Trick to reduce dimension: use lower-dimensional matrices W r
q , W r

k

and W r
v : dim(x)× h intead of dim(x)× dim(x)

47



Multi-head self attention layer

• Concatenate different self-attention mechanisms to give it more
flexibility

• Index each head with r = 1, 2, . . .

qr
i = W r

q xi kr
i = W r

k xi vr
i = W r

v xi

(w′)r
ij = (qr

i )
>kr

j wr
ij = softmax((w′)r

ij)) yr
i =

N∑
j=1

wr
ijvr

j

yi = Wyconcat
(

y1
i , y2

i , . . .
)

(y1, . . . , yN) = Attn (x1, . . . , xN)

• Trick to reduce dimension: use lower-dimensional matrices W r
q , W r

k

and W r
v : dim(x)× h intead of dim(x)× dim(x)

47



Multi-head self attention layer

• Concatenate different self-attention mechanisms to give it more
flexibility

• Index each head with r = 1, 2, . . .

qr
i = W r

q xi kr
i = W r

k xi vr
i = W r

v xi

(w′)r
ij = (qr

i )
>kr

j wr
ij = softmax((w′)r

ij)) yr
i =

N∑
j=1

wr
ijvr

j

yi = Wyconcat
(

y1
i , y2

i , . . .
)

(y1, . . . , yN) = Attn (x1, . . . , xN)

• Trick to reduce dimension: use lower-dimensional matrices W r
q , W r

k

and W r
v : dim(x)× h intead of dim(x)× dim(x)

47



A multi-head attention

from http://peterbloem.nl/blog/transformers

Figure 2: Illustration of multi-head self-attention with 4 heads. To get our keys, queries
and values, we project the input down to vector sequences of smaller dimension.

48

http://peterbloem.nl/blog/transformers


On the vocabulary

• ‘key’, ‘query’, ‘value’ come from a key-value data structure (search
engine)

If we give a query key and match it to a database of available keys, then the data
structure returns the corresponding matched value

• Similar here
matching done by scalar products
softmax ensures a soft-matching
keys are matched to queries in some extent

• ”Self-attention”? The self-attention mechanism allows the inputs
1. to interact with each other (“self”)
2. to find out who they should pay more attention to (“attention”)

The outputs are aggregates of these interactions and attention scores.

49



On the vocabulary

• ‘key’, ‘query’, ‘value’ come from a key-value data structure (search
engine)
If we give a query key and match it to a database of available keys, then the data
structure returns the corresponding matched value

• Similar here
matching done by scalar products
softmax ensures a soft-matching
keys are matched to queries in some extent

• ”Self-attention”? The self-attention mechanism allows the inputs
1. to interact with each other (“self”)
2. to find out who they should pay more attention to (“attention”)

The outputs are aggregates of these interactions and attention scores.

49



On the vocabulary

• ‘key’, ‘query’, ‘value’ come from a key-value data structure (search
engine)
If we give a query key and match it to a database of available keys, then the data
structure returns the corresponding matched value

• Similar here
matching done by scalar products
softmax ensures a soft-matching
keys are matched to queries in some extent

• ”Self-attention”? The self-attention mechanism allows the inputs
1. to interact with each other (“self”)
2. to find out who they should pay more attention to (“attention”)

The outputs are aggregates of these interactions and attention scores.

49



On the vocabulary

• ‘key’, ‘query’, ‘value’ come from a key-value data structure (search
engine)
If we give a query key and match it to a database of available keys, then the data
structure returns the corresponding matched value

• Similar here
matching done by scalar products
softmax ensures a soft-matching
keys are matched to queries in some extent

• ”Self-attention”?

The self-attention mechanism allows the inputs
1. to interact with each other (“self”)
2. to find out who they should pay more attention to (“attention”)

The outputs are aggregates of these interactions and attention scores.

49



On the vocabulary

• ‘key’, ‘query’, ‘value’ come from a key-value data structure (search
engine)
If we give a query key and match it to a database of available keys, then the data
structure returns the corresponding matched value

• Similar here
matching done by scalar products
softmax ensures a soft-matching
keys are matched to queries in some extent

• ”Self-attention”? The self-attention mechanism allows the inputs
1. to interact with each other (“self”)
2. to find out who they should pay more attention to (“attention”)

The outputs are aggregates of these interactions and attention scores.

49



On the vocabulary

• ‘key’, ‘query’, ‘value’ come from a key-value data structure (search
engine)
If we give a query key and match it to a database of available keys, then the data
structure returns the corresponding matched value

• Similar here
matching done by scalar products
softmax ensures a soft-matching
keys are matched to queries in some extent

• ”Self-attention”? The self-attention mechanism allows the inputs
1. to interact with each other (“self”)
2. to find out who they should pay more attention to (“attention”)

The outputs are aggregates of these interactions and attention scores.

49



Transformer?

• This is an architecture

from http://peterbloem.nl/blog/transformers

• Combining self-attention, residual connections, layer normalizations
and standard MLPs

• Normalization and residual connections are standard tricks used to help
deep neural networks train faster and more accurately

• The layer normalization is applied over the embedding dimension only

50

http://peterbloem.nl/blog/transformers


Transformer?

• This is an architecture

from http://peterbloem.nl/blog/transformers

• Combining self-attention, residual connections, layer normalizations
and standard MLPs

• Normalization and residual connections are standard tricks used to help
deep neural networks train faster and more accurately

• The layer normalization is applied over the embedding dimension only

50

http://peterbloem.nl/blog/transformers


Transformer?

• This is an architecture

from http://peterbloem.nl/blog/transformers

• Combining self-attention, residual connections, layer normalizations
and standard MLPs

• Normalization and residual connections are standard tricks used to help
deep neural networks train faster and more accurately

• The layer normalization is applied over the embedding dimension only

50

http://peterbloem.nl/blog/transformers


Transformer?

• This is an architecture

from http://peterbloem.nl/blog/transformers

• Combining self-attention, residual connections, layer normalizations
and standard MLPs

• Normalization and residual connections are standard tricks used to help
deep neural networks train faster and more accurately

• The layer normalization is applied over the embedding dimension only

50

http://peterbloem.nl/blog/transformers


Positional encoding

• Unlike sequence models (such as RNNs or LSTMs), self-attention layers
are permutation-equivariant

• Meaning that {
`The dog chases the cat'
`The cat chases the dog'

will learn the same features
• Solution: positional embedding/encoding

One-hot encoding
Sinusoidal encoding

position t → (sin(ω1t), sin(ω2t), . . . , sin(ωdt))

with ωk = 1
10000k/d (float continuous counterparts of binary values)

The 128-dimensional positional encoding
for a sentence with a maximum length of
50. Each row represents the encoding
vector.

51



Positional encoding

• Unlike sequence models (such as RNNs or LSTMs), self-attention layers
are permutation-equivariant

• Meaning that {
`The dog chases the cat'
`The cat chases the dog'

will learn the same features

• Solution: positional embedding/encoding
One-hot encoding
Sinusoidal encoding

position t → (sin(ω1t), sin(ω2t), . . . , sin(ωdt))

with ωk = 1
10000k/d (float continuous counterparts of binary values)

The 128-dimensional positional encoding
for a sentence with a maximum length of
50. Each row represents the encoding
vector.

51



Positional encoding

• Unlike sequence models (such as RNNs or LSTMs), self-attention layers
are permutation-equivariant

• Meaning that {
`The dog chases the cat'
`The cat chases the dog'

will learn the same features
• Solution: positional embedding/encoding

One-hot encoding
Sinusoidal encoding

position t → (sin(ω1t), sin(ω2t), . . . , sin(ωdt))

with ωk = 1
10000k/d (float continuous counterparts of binary values)

The 128-dimensional positional encoding
for a sentence with a maximum length of
50. Each row represents the encoding
vector.

51



Positional encoding

• Unlike sequence models (such as RNNs or LSTMs), self-attention layers
are permutation-equivariant

• Meaning that {
`The dog chases the cat'
`The cat chases the dog'

will learn the same features
• Solution: positional embedding/encoding

One-hot encoding
Sinusoidal encoding

position t → (sin(ω1t), sin(ω2t), . . . , sin(ωdt))

with ωk = 1
10000k/d (float continuous counterparts of binary values)

The 128-dimensional positional encoding
for a sentence with a maximum length of
50. Each row represents the encoding
vector.

51



Simple sequence classification transformer

• Goal: build a sequence classifier for sentiment analysis
• IMDb sentiment classification dataset

(input) movie reviews (sequences of words)
(output) classification labels: positive or negative

from http://peterbloem.nl/blog/transformers

52

http://peterbloem.nl/blog/transformers


Simple sequence classification transformer

• Goal: build a sequence classifier for sentiment analysis
• IMDb sentiment classification dataset

(input) movie reviews (sequences of words)
(output) classification labels: positive or negative

from http://peterbloem.nl/blog/transformers

52

http://peterbloem.nl/blog/transformers


Text generation transformer

• Goal: predict the next character in a sequence

• With a transformer, the output depends on the entire input sequence:
vacuously easy task!

• Solution: apply a mask to ensure that it cannot look forward into the
sequence

from http://peterbloem.nl/blog/transformers

53

http://peterbloem.nl/blog/transformers


Text generation transformer

• Goal: predict the next character in a sequence

• With a transformer, the output depends on the entire input sequence:
vacuously easy task!

• Solution: apply a mask to ensure that it cannot look forward into the
sequence

from http://peterbloem.nl/blog/transformers

53

http://peterbloem.nl/blog/transformers


Text generation transformer

• Goal: predict the next character in a sequence

• With a transformer, the output depends on the entire input sequence:
vacuously easy task!

• Solution: apply a mask to ensure that it cannot look forward into the
sequence

from http://peterbloem.nl/blog/transformers

53

http://peterbloem.nl/blog/transformers


The original transformer

• Vaswani et al. (2017)

• A sequence-to-sequence structure by encoder-decoder architecture
with teacher forcing

 encoder: takes the input sequence and maps it to a latent representation
decoder: unpacks it to the desired target sequence (for instance, language
translation)
teacher forcing: the decoder also has access to the input sequence

54



The original transformer

• Vaswani et al. (2017)

• A sequence-to-sequence structure by encoder-decoder architecture
with teacher forcing

 

encoder: takes the input sequence and maps it to a latent representation
decoder: unpacks it to the desired target sequence (for instance, language
translation)
teacher forcing: the decoder also has access to the input sequence

54



The original transformer

• Vaswani et al. (2017)

• A sequence-to-sequence structure by encoder-decoder architecture
with teacher forcing

 encoder: takes the input sequence and maps it to a latent representation

decoder: unpacks it to the desired target sequence (for instance, language
translation)
teacher forcing: the decoder also has access to the input sequence

54



The original transformer

• Vaswani et al. (2017)

• A sequence-to-sequence structure by encoder-decoder architecture
with teacher forcing

 encoder: takes the input sequence and maps it to a latent representation
decoder: unpacks it to the desired target sequence (for instance, language
translation)

teacher forcing: the decoder also has access to the input sequence

54



The original transformer

• Vaswani et al. (2017)

• A sequence-to-sequence structure by encoder-decoder architecture
with teacher forcing

 encoder: takes the input sequence and maps it to a latent representation
decoder: unpacks it to the desired target sequence (for instance, language
translation)
teacher forcing: the decoder also has access to the input sequence

54



Focus on the decoder

• The decoder also has access to the input sequence in an autoregressive
manner: access to the words it has already generated

• The decoder can use
word-for-word sampling to take care of the low-level structure like syntax
and grammar
the latent vector to capture more high-level semantic structure

55



Focus on the decoder

• The decoder also has access to the input sequence in an autoregressive
manner: access to the words it has already generated

• The decoder can use
word-for-word sampling to take care of the low-level structure like syntax
and grammar
the latent vector to capture more high-level semantic structure

55



Modern transformers

• BERT (Bidirectional Encoder Representations from Transformers):
reaches human-level performance on a variety of language based tasks:
question answering, sentiment classification or classifying whether two
sentences naturally follow one another

simple stack of transformer blocks
pre-trained on a large general-domain corpus (English books and wikipedia)
pre-training possible through masking or next-sequence classification

• GPT-2: prediction of the next word

• Transformer-XL: for long sequence of text

• Sparse transformers: uses sparse attention matrices

56



Modern transformers

• BERT (Bidirectional Encoder Representations from Transformers):
reaches human-level performance on a variety of language based tasks:
question answering, sentiment classification or classifying whether two
sentences naturally follow one another

simple stack of transformer blocks

pre-trained on a large general-domain corpus (English books and wikipedia)
pre-training possible through masking or next-sequence classification

• GPT-2: prediction of the next word

• Transformer-XL: for long sequence of text

• Sparse transformers: uses sparse attention matrices

56



Modern transformers

• BERT (Bidirectional Encoder Representations from Transformers):
reaches human-level performance on a variety of language based tasks:
question answering, sentiment classification or classifying whether two
sentences naturally follow one another

simple stack of transformer blocks
pre-trained on a large general-domain corpus (English books and wikipedia)

pre-training possible through masking or next-sequence classification

• GPT-2: prediction of the next word

• Transformer-XL: for long sequence of text

• Sparse transformers: uses sparse attention matrices

56



Modern transformers

• BERT (Bidirectional Encoder Representations from Transformers):
reaches human-level performance on a variety of language based tasks:
question answering, sentiment classification or classifying whether two
sentences naturally follow one another

simple stack of transformer blocks
pre-trained on a large general-domain corpus (English books and wikipedia)
pre-training possible through masking or next-sequence classification

• GPT-2: prediction of the next word

• Transformer-XL: for long sequence of text

• Sparse transformers: uses sparse attention matrices

56



Modern transformers

• BERT (Bidirectional Encoder Representations from Transformers):
reaches human-level performance on a variety of language based tasks:
question answering, sentiment classification or classifying whether two
sentences naturally follow one another

simple stack of transformer blocks
pre-trained on a large general-domain corpus (English books and wikipedia)
pre-training possible through masking or next-sequence classification

• GPT-2: prediction of the next word

• Transformer-XL: for long sequence of text

• Sparse transformers: uses sparse attention matrices

56



Modern transformers

• BERT (Bidirectional Encoder Representations from Transformers):
reaches human-level performance on a variety of language based tasks:
question answering, sentiment classification or classifying whether two
sentences naturally follow one another

simple stack of transformer blocks
pre-trained on a large general-domain corpus (English books and wikipedia)
pre-training possible through masking or next-sequence classification

• GPT-2: prediction of the next word

• Transformer-XL: for long sequence of text

• Sparse transformers: uses sparse attention matrices

56



Modern transformers

• BERT (Bidirectional Encoder Representations from Transformers):
reaches human-level performance on a variety of language based tasks:
question answering, sentiment classification or classifying whether two
sentences naturally follow one another

simple stack of transformer blocks
pre-trained on a large general-domain corpus (English books and wikipedia)
pre-training possible through masking or next-sequence classification

• GPT-2: prediction of the next word

• Transformer-XL: for long sequence of text

• Sparse transformers: uses sparse attention matrices

56



Wrapping up

• 2 NN network architecture paradigms: recurrent networks and attention

• Ideas behind attention surprisingly simple!

• Back-propagation in all of them: this is the learning phase

57



Wrapping up

• 2 NN network architecture paradigms: recurrent networks and attention

• Ideas behind attention surprisingly simple!

• Back-propagation in all of them: this is the learning phase

57



Wrapping up

• 2 NN network architecture paradigms: recurrent networks and attention

• Ideas behind attention surprisingly simple!

• Back-propagation in all of them: this is the learning phase

57



References i

Mikolov, Tomas et al. (2013). “Distributed representations of words and
phrases and their compositionality”. In: Advances in neural information
processing systems 26.
Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in
neural information processing systems 30.

58


	Word representation
	Recurrent NN
	Transformers
	References

