Large Scale Machine Learning

Introduction

Adeline Fermanian
adeline.fermanianamines-paristech.fr
March 2023

Mines ParisTech - PSL

Acknowledgement

Slides inspired by

- Chloé-Agathe Azencott
- Jean-Philippe Vert
- Claire Boyer

Sommaire

Why machine learning ?

TECH

2017 is the year of Machine Learning. Here's why

B GAURAV SANGWANI | ©0

Machine learning is maybe the most sweltering thing in Silicon Valley at this
moment. Particularly deep learning. The reason why it is so hot is on the
grounds that it can assume control of numerous repetitive, thoughtless tasks.
It'll improve doctors, and make lawyers better lawyers. What's more, it makes
cars drive themselves.

Communication

Support Bot

= Hello, what can | help you with?

- May | please have your email address?

FRENCH - ENGLISH

La souris est en dessous de la table. Le chat x
est sur la chaise. Le singe est sur la
branche.

0 .

The mouse is below the table. The cat is w
on the chair. The monkey is on the branch.

D) 0

on

B
c
o
n
o
[
@

YT
Py

s

Molecular Profiling Prognostic Markers

Markers predictive of drug
sensitivity/resistance

Markers predictive of .
adverse events

https://pct.mdanderson.org

https://pct.mdanderson.org

A common process: learning from data

Data Algorithm Model

-/

https://www.linkedin.com/pulse/supervised-machine-learning-pega-decisioning-solution-nizam-muhammad

- Given examples (training data), make a machine learn how to
predict on new samples, or discover patterns in data

A common process: learning from data

Data Algorithm Model

*,ﬂx)

https://www.linkedin.com/pulse/supervised-machine-learning-pega-decisioning-solution-nizam-muhammad

- Given examples (training data), make a machine learn how to
predict on new samples, or discover patterns in data

- Statistics + optimization + computer science

A common process: learning from data

Data Algorithm Model

*,ﬂx)

https://www.linkedin.com/pulse/supervised-machine-learning-pega-decisioning-solution-nizam-muhammad

- Given examples (training data), make a machine learn how to
predict on new samples, or discover patterns in data

- Statistics + optimization + computer science

- Gets better with more training examples and bigger computers

Large-scale ML?

p dimensions t tasks

n samples X y

- Iris dataset: n =150,p=4,t =1

- Cancer drug sensitivity: n = 103, p = 10%, ¢ = 100

- Imagenet: n = 14.105, p = 60.10%, t = 22.103

- Shopping, e-marketing n = O(10°), p = O(10°), t = O(10%)

- Astronomy, GAFAMs, web... n = O(10%), p = O(10%), t = O(10?)

1

Today’s goals

1. Review a few standard ML techniques

2. Introduce a few ideas and techniques to scale them to modern,
big datasets

Sommaire

A brief zoo of ML problems
Dimension reduction: PCA
Clustering: k-means
Regression: ridge regression
Classification: logistic regression and SVM

Nonlinear models: kernel methods

Learning scenarios

ML develops generic methods for solving different types of problems:

- Supervised learning
Goal: learn from examples

- Unsupervised learning
Goal: learn from data alone, extract structure in the data

- Reinforcement learning
Goal: learn by exploring the environment (e.g. games or
autonomous vehicle)

14

Learning scenarios

@ Spam detection

S
sf
S s
g5 .
CE o RelnforceTamt
Ustome @ ° C\asg\i\c g
lass,-ﬁc
atiop
\4
e
SO o
N
N .
{ Machine)- Supervised
learning

learning

Reduction

Tranfert

learning

source: fidle-cnrs

15

Unsupervised learning

Clustering :
Finding Common Relationships

YIRS

What is the
relationship
between

@ these data?

»>4"
A

ot
b

p 2

Reduction :

Reduce the number of dimensions

Wil i

Simplify
while
keeping
meaning

mdlii ~

Unsupervised B

Reduction

source: fidle-cnrs

16

Supervised learning

e

s learnin

g
%

source: fidle-cnrs

Classification :
Predict qualitative informations

o X

~ - Thisis a cat

~§ Tell me,
g/ whatisit?
[]

D
This is a rabbit

Régression :
Predict quantitative informations

2N
2
150 KE 400 K€ Tell me,

- what's the
@E price ?

120KE 100 K€

Main ML paradigms

- Unsupervised learning
m Dimension reduction
m Clustering
m Density estimation
m Feature learning

- Supervised learning

B Regression
m Classification
m Structured output classification

- Semi-supervised learning

- Reinforcement learning

Main ML paradigms

- Unsupervised learning
m Dimension reduction: PCA
m Clustering: k-means
m Density estimation
m Feature learning
- Supervised learning
B Regression: OLS, ridge regression
m Classification: logistic regression, SVM
m Structured output classification
- Semi-supervised learning

- Reinforcement learning

19

Sommaire

Why machine learning ?

A brief zoo of ML problems

Dimension reduction: PCA

Algorithmic complexity recap

20

P k<p

n X »" X'

- Reduce the dimension without losing the variability in the data;
- Visualization (k = 2, 3)

- Discover structure

21

Motivation: Population genetics

- Genetic data of 1387 Europeans

\

source: Novembre et al, 2008 22

PCA definition

- The kth principal component:

23

PCA definition

- The kth principal component:
m |s orthogonal to all previous components:

(Wi, w1) = (W, wa) = -+ = (wg, we—1) =0

23

PCA definition

- The kth principal component:
m |s orthogonal to all previous components:

(W, w1) = (Wi, w2) = -+ = (W, W—1) = 0
m Captures the largest amount of variance:

max w' X' Xw = max || Xuw|?
llwll=1 llwll=1

(X7 X: empirical covariance of X (centered))

23

PCA definition

- The kth principal component:
m |s orthogonal to all previous components:

(W, w1) = (Wi, w2) = -+ = (W, W—1) = 0
m Captures the largest amount of variance:

max w' X' Xw = max || Xuw|?
llwll=1 llwll=1

(X7 X: empirical covariance of X (centered))
m Solution: wis the kth eigenvector of X T X.

23

PCA complexity

- Memory: store X and covariance matrix X ' X:

24

PCA complexity

- Memory: store X and covariance matrix X " X: O(max(np, p?))

24

PCA complexity

- Memory: store X and covariance matrix X " X: O(max(np, p?))
- Runtime:

m Compute X' X: O(np?)

m Compute k eigenvectors of X' X with power methods: O (/p?)

24

PCA complexity

- Memory: store X and covariance matrix X " X: O(max(np, p?))

- Runtime:
m Compute X' X: O(np?)
m Compute k eigenvectors of X' X with power methods: O (/p?)
Computing the covariance matrix is more expensive than computing its
eigenvectors (n > k)!

24

PCA complexity

- Memory: store X and covariance matrix X " X: O(max(np, p?))

m Compute X' X:
m Compute k eigenvectors of X' X with power methods:

Computing the covariance matrix is more expensive than computing its
eigenvectors (n > k)!

Example
n =107 p =108

- Store X X: 106 B = 9000 TB
- Compute X T X:

24

A US Supercomputer Just Broke The
Exascale Barrier, Ranking Fastest in
The World

TECH 07June 2022 By PETER DOCKRILL

Frontier. (Oak Ridge National Laboratory/YouTube)

The US has succeeded in developing the world's first 'true’ exascale
supercomputer, honoring a pledge made by President Obama almost seven
years ago, and ushering the world into a new era of computational capability.

Until now, the most speedy supercomputers in the world were still working in
the petascale, achieving a quadrillion calculations per second. The exascale
brings this to a whole new level, reaching a guintillion operations per second.

The Frontier supercomputer, built at the Department of Energy's Oak Ridge
National Laboratory in Tennessee, has now become the world's first known
supercomputer to demonstrate a processor speed of 1.1 exaFLOPS (1.1
quintillion floating point operations per second, or FLOPS).
25

PCA complexity

- Memory: store X and covariance matrix X " X: O(max(np, p?))

m Compute X' X:
m Compute k eigenvectors of X X with power methods:

Computing the covariance matrix is more expensive than computing its
eigenvectors (n > k)!

Example

n=10°p= 103

- Store X X: 106 B = 9000 TB

- Compute X T X: (Floating Point Operations per
Second)

World's fastest computer (2022): 1.1 exaFLOPS = 10'® FLOPS
— 115 days!

26

Sommaire

Why machine learning ?

A brief zoo of ML problems

Clustering: k-means

Algorithmic complexity recap

27

Raw Data

- Unsupervised learning
- Discover groups

- Reduce dimension

28

k-means definition

- Dataset {z!,...,z"} C R

29

k-means definition

- Dataset {z!,...,z"} C RP.
- Find a cluster assignment ¢; € {1,...,k} foralli=1,...,n
- that minimizes the intra-cluster variance:

29

k-means definition

- Dataset {z!,...,z"} C RP.
- Find a cluster assignment ¢; € {1,...,k} foralli=1,...,n
- that minimizes the intra-cluster variance:

n
mlnz ||:BZ — He;
Ci
=1

2,

29

k-means definition

- Dataset {z!,...,z"} C RP.
- Find a cluster assignment ¢; € {1,...,k} foralli=1,...,n
- that minimizes the intra-cluster variance:

n
mlnz ||:BZ — He;
Ci
=1

where the pj, j =1,...,k, are the centroids

2,

1 A
M= ———— z
1= = A

Be=y

29

k-means definition

- Dataset {z!,...,z"} C RP.
- Find a cluster assignment ¢; € {1,...,k} foralli=1,...,n
- that minimizes the intra-cluster variance:

n
mlnz ||:BZ — He;
Ci
=1

where the pj, j =1,...,k, are the centroids

2,

1 A
M= ———— z
1= = A

Be=y

* * .
’0 . .’, @
* *
© e .
« * ,' @
.

29

k-means definition

- Dataset {z!,...,z"} C RP.
- Find a cluster assignment ¢; € {1,...,k} foralli=1,...,n
- that minimizes the intra-cluster variance:

n
min Y [l2* - eI,
g=il,
where the pj, j =1,...,k, are the centroids

1 i
b= e = Zw

e =l 2=

* * .
’0 . .’, @
* *
© e .
« * ,' @
.

29

k-means definition

- Dataset {z!,...,z"} C RP.
- Find a cluster assignment ¢; € {1,...,k} foralli=1,...,n
- that minimizes the intra-cluster variance:

n
min Y [l2* - eI,
g=il,
where the pj, j =1,...,k, are the centroids

1 i
b= e = Zw

e =l 2=

* * .
’0 . .’, @
* *
© e .
« * ,' @
.

— Voronoi diagram .

k-means definition

- NP-hard problem!

30

k-means definition

- NP-hard problem! Approximate solution by iterating
1. Assignment step: fix the centroids u;, optimize assignments ¢;

Vi=1,...,m, ci< argmin.cq k}chifuCH

30

k-means definition

- NP-hard problem! Approximate solution by iterating
1. Assignment step: fix the centroids u;, optimize assignments ¢;

Vi=1,...,n, ¢+ argmin g k}chifuCH
2. Update step: update the centroids
Vi=1 k, pi < _ Z @’
pooogh i |{7;:Ci:j}“i:Cf:j

30

k-means example

k=3
° °
° °
.oo. *
e ® ©
o ® L *°.
: ° S o.o
e® o °
°
. o : o ...
* e o °..
° °
. ° o.o
o o .
°

31

k-means example

> Pick 3 centroids at random.

=g
L] []
L] L]
...‘ ¢
s * .
(] b4 ..'
. : . & .I.
«® ° .
L]] ° ...
L] -”» ...
L] L]
® . @

32

k-means example

> Assign each observation to the nearest centroid =g
. []
LJ]
n. .. L
« *
) ¢ °*
] .‘
L L]
e® o
« 0 o
L
L .- ™
s s °*
L]
. LA

33

k-means example

> Recompute centroids

k=3
L []
® .
c... .
e ° .
@ ¢ °°
. &
L []
s® o
e 8 o
®
LY ...
e o *
e .
© * ¢
* .
L]
.

34

k-means example

> Re-assign each observation to the nearest centroid =g
L []
L .
.. ..
™ L]
L I ¢
L
L []
*® @
e 8 o
L]
. - L]
e o *
. [
- . @

35

k-means example

> Recompute centroids, and iterate process until convergence

=3
a .
[]
- @
L
L]
e® o
tl: * Le
. - L
s s *
. [
. LA

36

k-means complexity

« Runtime:

37

k-means complexity

- Runtime:
m Assignment step:

Vi = 17---7”7 C’i<_argmin{:e{lwu,k}”wi_H’CH

37

k-means complexity

- Runtime:
m Assignment step:

Vi = 17---7”7 C’i<_argmin{:e{lwu,k}”wi_H’CH

Compute n x k distances in R?: O(knp)

37

k-means complexity

- Runtime:
m Assignment step:

Vi = 17---7”7 C’i<_argmin{:e{lwu,k}”wi_H’CH

Compute n x k distances in R?: O(knp)
m Update step:

1 .
vj:17~~~7k> N%i ml
T i a =g Z

37

k-means complexity

- Runtime:
m Assignment step:

Vi = 17---7”7 C’i<_argmin{:e{lwu,k}”wi_H’CH

Compute n x k distances in R?: O(knp)
m Update step:

1 .
vj:17~~~7k> K< z'
T it =} Z

Sum n values in R? for each centroid: O(knp)

37

k-means complexity

- Runtime:
m Assignment step:

Vi = 17---7”7 C’i<_argmin{:e{lwu,k}”wi_H’CH

Compute n x k distances in R?: O(knp)
m Update step:

1 .
vj:17~~~7k> K< z'
T it =} Z

Sum n values in R? for each centroid: O(knp)
m Do T iterations: O(kTnp)

37

k-means complexity

- Runtime:
m Assignment step:

Vi = 17---7”7 C’i<_argmin{:e{lwu,k}”wi_H’CH

Compute n x k distances in R?: O(knp)
m Update step:

1 5
vj:17~~~7k> N%i ml
T =l 2,
Sum n values in R? for each centroid: O(knp)

m Do T iterations: O(kTnp)

- Memory:

37

k-means complexity

- Runtime:
m Assignment step:

Vi = 17---7”7 Ci < argmince{lwu,k}”wi _H’CH
Compute n x k distances in R?: O(knp)
m Update step:
=1k e 3
vt BT e =0l 2

Sum n values in R? for each centroid: O(knp)
m Do T iterations: O(kTnp)
- Memory:
m Store n cluster assignments and k centroids: O(n + kp)

37

k-means complexity

- Runtime:
m Assignment step:

Vi = 17---7”7 C’i<_argmin{:e{lwu,k}”wi_H’CH

Compute n x k distances in R?: O(knp)
m Update step:

1 .
vj:17~~~7k> K< z'
T it =} Z

Sum n values in R? for each centroid: O(knp)
m Do T iterations: O(kTnp)
- Memory:

m Store n cluster assignments and k centroids: O(n + kp)
m Store X: O(np)

37

Sommaire

Why machine learning ?

A brief zoo of ML problems

Regression: ridge regression

Algorithmic complexity recap

38

® o
- @
- 7 o
%
8
® - §a ;h.
= @ . 3,"0?0%0 ooo
A O:P qac o
« Jo 08998
o go° °g
o :%
T T T T T 7
0 1 2 3 4 5

- Predict a continuous output y € R from an input z € R?

39

- Predict a continuous output y € R from an input z € R?

39

Linear regression

- Dataset:
S={(zhy'),.... (2" y")} CRP xR & X € R"*P yc R"

40

Linear regression

- Dataset:
S={("y"),....,(&" y")} CRP xR & X e R™P,y cR"
- Fit a linear function:

p
fa(@) =BTz =Y Bz
j=1

40

Linear regression

- Dataset:
S={("y"),....,(&" y")} CRP xR & X e R™P,y cR"
- Fit a linear function:

p
fa(m)=BTx =" Bz
j=1
- Goodness of fit measured by residual sum of squares:
B = argmin RSS(B) = argmin Z(yi — fa(z?))?
B B =1

= arg;niﬂ\ly - XB|?

40

Linear regression

- Dataset:
S={(zhy'),.... (2" y")} CRP xR & X € R"*P yc R"
- Fit a linear function:

p

falm) =BTz = Zﬁjfj
j=1

- Goodness of fit measured by residual sum of squares:
B = argmin RSS(B) = argmin Z(yi — fa(z?))?
B B =1
= argmin||y — X3
B

- Solution:
/@OLS _ (XTX)leTy
(uniquely defined when X T X invertible)

40

Ridge regression

- Hoerl and Kennard, 1970
- Ridge regression minimizes the regularized RSS:

p
Brdee — arg;nin RSS(B) + A > _ 57
j=1

41

Ridge regression

- Hoerl and Kennard, 1970
- Ridge regression minimizes the regularized RSS:

p
B9 = argmin RSS(8) + A Y _ 7
B j=1
- Solution:
I@ﬂdge _ (XTX+ AI)*IXTy

— unique and always exists !

- Correlated features get similar weights

41

Limit cases

A;\idge _ (XTX+)\[)_1XTy

Corollary

- As A — 0, 819 — 3OS (low bias, high variance).

© AS A\ = +o9, ﬁ;dge — 0 (high bias, low variance).

Régression ridge

04 —— fixed acidity
volatile acidity
02 —— ditric acid
E " —— residual sugar
- chlorides
E —— free sulfur dioxide
o 02 total sulfur dioxide
oe density
pH
e - sulphates
—_— —— alcohol
w0t 100 10 10 1 10

42

Ridge regression complexity

A;jdge _ (XTX+)\I)_lXTy
- Compute XX + AI: O(np?)

When n > p, computing X X 4 \I is more expensive than inverting
it!

43

Ridge regression complexity

A;\idge _ (XTX+)\])_1XTy

- Compute XX + AI: O(np?)
< Invert XTX + M : O(p?)

When n > p, computing X X 4 \I is more expensive than inverting
it!

43

Choice of \
.

Prediction error

Tl

® On training data

Y

Model complexity

I

Choice of \

- Data splitting strategies: cross-validation

45

Choice of \

- Data splitting strategies: cross-validation
m Split the training set (of size n) into K equally-sized chunks

Training
Training

Training
Training

Choice of \

- Data splitting strategies: cross-validation
m Split the training set (of size n) into K equally-sized chunks

Training
Training

Training
Training

m K folds: one for testing, the K — 1 others for training

Choice of \

- Data splitting strategies: cross-validation
m Split the training set (of size n) into K equally-sized chunks

Training
Training

Training
Training

m K folds: one for testing, the K — 1 others for training
m Cross-validation score: average performance over the K folds

Choice of \

- Data splitting strategies: cross-validation
m Split the training set (of size n) into K equally-sized chunks

Training
Training

Training
Training

m K folds: one for testing, the K — 1 others for training
m Cross-validation score: average performance over the K folds
- For selection of \: take a grid of values (Ay,...,Ay) and choose
the X\ with the best cross-validation score.

Choice of \

- Data splitting strategies: cross-validation
m Split the training set (of size n) into K equally-sized chunks

Training
Training

Training
Training

m K folds: one for testing, the K — 1 others for training
m Cross-validation score: average performance over the K folds

- For selection of \: take a grid of values (Ay,...,Ay) and choose
the \ with the best cross-validation score.

- Multiplies complexity by K /!

Generalization: /,-regularized learning

- Generalization of the ridge regression to any loss:

mln—ZE fa(z), y") + X812

46

Generalization: /,-regularized learning

- Generalization of the ridge regression to any loss:

mln—ZE fa(z), y") + X812

- Empirical risk: R(8) = L Y7 | ¢(fa(x?), y°)

46

Generalization: /,-regularized learning

- Generalization of the ridge regression to any loss:

mln—ZE fa(zh), y") + |87
- Empirical risk: R(8) = L Y7 | ¢(fa(x?), y°)

- If the loss is convex, then the problem is strictly convex and has
a unique global solution, which can be found numerically.

46

Generalization: /,-regularized learning

- Generalization of the ridge regression to any loss:
mln—ZE fa(z), y") + X812

- Empirical risk: R(8) = L Y7 | ¢(fa(x?), y°)
- If the loss is convex, then the problem is strictly convex and has
a unique global solution, which can be found numerically.

LOSSES fOI’ I’egl’ession e colit absolu
40 cofiit quadratique
. . _ o 2 coiit £-insensible
Square loss: l(u,y) = (v —y)* | ot nsenst

— Ridge regression
- Absolute loss: £(u,y) = |u — y|
- e-insensitive loss :
£(u, y) = (Jlu—y| —)+
- Huber loss : mix quadratic/linear

46

Gradient descent

If the loss is convex, then the problem is strictly convex and has a
unique global solution, which can be found numerically.

- Assume the function to
minimize is differentiable,
then S 3W)

J(v) > J(u) + VJ(u)" (v—u)

47

Gradient descent

If the loss is convex, then the problem is strictly convex and has a
unique global solution, which can be found numerically.

- Assume the function to
minimize is differentiable,

then 430
(v, 3+ I'(u).(v-u))
(u, I(w))

J(v) > J(u) + VJ(u)" (v—u)

- VJ(u) =0 < uminimizes J

47

Gradient descent

Idea: Minimize a differentiable, strictly convex function J by finding
where its gradient is 0.

J(@)=0

48

Gradient descent

Idea: Minimize a differentiable, strictly convex function J by finding
where its gradient is 0.

- Algorithm:
m Pick ap randomly

J'(a0) <0

ap Ma)=0

48

Gradient descent

Idea: Minimize a differentiable, strictly convex function J by finding
where its gradient is 0.

- Algorithm:
m Pick ap randomly
m Update a1 = ap — aVJ(ap) J'(a0) <0

48

Gradient descent

Idea: Minimize a differentiable, strictly convex function J by finding
where its gradient is 0.

- Algorithm:
m Pick ap randomly
m Update a1 = ao — aVJ(ao)
m Repeat

J'(a0) <0

48

Gradient descent

Idea: Minimize a differentiable, strictly convex function J by finding
where its gradient is 0.

- Algorithm:
m Pick ap randomly
m Update a1 = ao — aVJ(ao)
m Repeat J'(a0) <0
m Stop when |[VJ(ao)| < e

48

Sommaire

Why machine learning ?

A brief zoo of ML problems

Classification: logistic regression and SVM

Algorithmic complexity recap

49

- Predict the category of data

- 2 or more (sometimes many) categories

50

Linear models for classification

- Training set § = {(z', ¢'),..., (=", y™)} CRP x {-1,1}

51

Linear models for classification

- Training set § = {(z', ¢'),..., (=", y™)} CRP x {-1,1}
- Fit a linear function

51

Linear models for classification

- Training set § = {(z', ¢'),..., (=", y™)} CRP x {-1,1}
- Fit a linear function
folz)=8"=
- Prediction on a new point z € R?:
{+1 if fa(z) > 0,

—1 otherwise.

51

- The 0/1 loss measures if a prediction is correct or not:

0 ify=sign(f(z))
1 otherwise.

o1 (@), 1)) = 1 (4 () < 0) = {

52

- The 0/1 loss measures if a prediction is correct or not:

o (F(o), 1)) = L(3f(2) < 0) = {0 iy = sign(/(a))

1 otherwise.

- It is them tempting to learn fz(z) = B = by solving:

— ¢ 2|82
i Z o/1(fa(z"), ¥%) + MBI
regularization

misclassification rate

52

- The 0/1 loss measures if a prediction is correct or not:

boy1(f(z),y)) = L(yf(z) <0) =

1 otherwise.

{0 if y = sign(f(x))

- It is them tempting to learn fz(z) = B = by solving:

— ¢ 2|82
i Z o/1(fa(="), ")+ MBI
regularization

misclassification rate

- However:
m The problem is non-smooth, and typically NP-hard to solve

52

- The 0/1 loss measures if a prediction is correct or not:

boy1(f(z),y)) = L(yf(z) <0) =

1 otherwise.

{0 if y = sign(f(x))

- It is them tempting to learn fz(z) = B = by solving:

— ¢ 2|82
i Z o/1(fa(="), ")+ MBI
regularization

misclassification rate

- However:

m The problem is non-smooth, and typically NP-hard to solve
m The regularization has no effect since the 0/1 loss is invariant by
scaling of 3

52

The logistic loss

- An alternative is to define a probabilistic model of y
parametrized by f(x), e.g.

Ve {11}, B(y|f(2) = ——— = o(yf(x))

- 1 + e_yf(z

53

The logistic loss

- An alternative is to define a probabilistic model of y
parametrized by f(x), e.g.

Ve {11}, B(y|f(2) = ——— = o(yf(x))

- 1 + e_yf(z

53

The logistic loss

- An alternative is to define a probabilistic model of y
parametrized by f(x), e.g.

Ve {11}, B(y|f(2) = ——— = o(yf(x))

- 1+ e_yf(z

- The logistic loss is the negative conditional likelihood:
Logistic(f(2), y) = —Inp(y| f()) = In(1 + e %))

53

Ridge logistic regression

- Cessie and Houwelingen (1992)

1 n igT i
. _ 2 —y'B x 2
min J(8) =~ ;ln(l +e VP ")+ A8

54

Ridge logistic regression

- Cessie and Houwelingen (1992)

1 n igT i
. _ 2 —y'B x 2
min J(8) =~ ;ln(l +e VP ")+ A8

- Can be interpreted as a regularized conditional maximum
likelihood estimator

54

Ridge logistic regression

- Cessie and Houwelingen (1992)

1 n igT i
. _ 2 —y'B x 2
min J(8) =~ ;ln(l +e VP ")+ A8

- Can be interpreted as a regularized conditional maximum
likelihood estimator

- No explicit solution, but smooth convex optimization problem
that can be solved numerically

54

Newton-Raphson iteratins

- Goal: minimize J convex, differentiable

55

Newton-Raphson iteratins

- Goal: minimize J convey, differentiable
- Gradient descent:

uhew uold o OLVJ(UOld)

55

Newton-Raphson iteratins

- Goal: minimize J convex, differentiable
- Gradient descent:

uhew uold _ OLVJ(UOld)

- Assume J is twice differentiable
m Second-order Taylor's expansion:

T(0) % J@)VI(w) T (0=) + 5 (0 =) 2T (w) (v - w)

55

Newton-Raphson iteratins

- Goal: minimize J convex, differentiable
- Gradient descent:

uhew uold _ OLVJ(UOld)

- Assume J is twice differentiable
m Second-order Taylor's expansion:

J(v) = J(w)VJ(u) (v—u)+ %(’U —u) V2 J(u)" (v—u) = g(v)

55

Newton-Raphson iteratins

- Goal: minimize J convex, differentiable
- Gradient descent:

uhew uold _ (JéVJ(uOld)

- Assume J is twice differentiable
m Second-order Taylor's expansion:

J(v) = J(U)VJ(U)T(’U —u) + %(U — u)TVQJ(u)T(v —u) = g(v)
® Minimum in v:

Vg(v) = VJ(u) + V> J(u) " (v—u)
Vg(v) =0 v=1u— (V>J(u) 'VJ(u).

55

Newton-Raphson iteratins

- Goal: minimize J convex, differentiable

- Gradient descent:
weW uold _ aVJ(uOld)

- Assume J is twice differentiable
m Second-order Taylor's expansion:

J(v) = J(w)VJI(u)" (v —u) + %(v —u) V2 J(u)" (v—u) = g(v)
® Minimum in v:

V() = VJ(u) + V2 J(u) " (v—u)
V(o) =0 v=u— (V>J(u) 'VJ(u).

m Take a = (V2J(u°9))~" in the gradient step

55

Solving ridge logistic regression

. 1 n BT &
mﬁan(ﬁ)=£Zln(1+€ YT 1 A8I13

i=1

56

Solving ridge logistic regression

. 1 <& BT &
mﬁan(ﬁ)zEZIH(l-Fe v)+ AlIBII3

i=1

- Solve with Newton-Raphson iterations

n

1 yiat
Vel (0) = —— > Tt 228
=il

1 < . o
——> 'l = Pa(y’ =)z’ +2)8

i=1

1 <N zigileyB'a
ViJ(B)==) ——— 4N
,3 (6) n ; (1 _|_ eyzBTzz)Q +

1 &) o
== Pg(1]z")(1 —Pg(l]z))z'z’T + 2T
n

=1

56

Solving ridge logistic regression (cont.)

1 <& 8T 0
min J = — In(1+ e Y8 =) 4+ A z
i I(9) = 3o)+ N8I3

- Solve with Newton-Raphson iterations

Bnew - IBOld _ [VE‘J(I@Old)}flvﬁj(ﬁold)'

57

Solving ridge logistic regression (cont.)

1 <& 8T 0
min J = — In(1+ e Y8 =) 4+ A z
i I(9) = 3o)+ N8I3

- Solve with Newton-Raphson iterations
Bnew - IBOld _ [VE‘J(@old)}flvﬁj(ﬁold)'

- Each step is equivalent to solving a weighted ridge regression
problem — iteratively reweighted least squares (IRLS).

57

Solving ridge logistic regression (cont.)

min /(8 Zm 1+ e7VP=) 4 |83

- Solve with Newton-Raphson iterations
Bnew - IBOld _ [VE‘J(@old)}flvﬁj(ﬁold)'

- Each step is equivalent to solving a weighted ridge regression
problem — iteratively reweighted least squares (IRLS).

- Complexity O(T(np? + p3))

57

Large-margin classifiers

- Forany f: R? — R, the margin of f on an (x, y) pair is

yf (z)

58

Large-margin classifiers

- Forany f: R? — R, the margin of f on an (x, y) pair is

yf (z)

- Large-margin classifiers: maximize yf(x)
min}_ ¢(y'fa(a") + 188
=1

for a convex, non-increasing function ¢ : R — R+

58

Loss function examples

— 0-1
4 — hinge

square
—— logistic

-3 -2 -1 0 1 2 3 4
Loss Method o(u)
0-1 none 1(u <0)
Hinge Support vector machine (SVM) max(1 — u,0)
Logistic Logistic regression log(1+ e~ ")
Square Ridge regression (1 — u)?
Exponential Boosting et

59

— 0-1

4 — hinge
square
logistic

PAC]
|

n

|

o
~
©
IS

- Computation

B ¢ convex means we need to solve a convex optimization problem.
m A"good” ¢ may be one which allows for fast optimization

- Theory

m Most ¢ lead to consistent estimators
m Some may be more efficient

60

Linear SVM

- Boser et al. (1992)

. 071_ i Twi +>\ 2
min ;maX(y'B8 z') + MBS

61

Linear SVM

- Boser et al. (1992)
min Zmax(o,l —y'BTz') + N8|
=il

BER?

- Non-smooth convex optimization problem (quadratic program)

61

Linear SVM

- Boser et al. (1992)
. 071 AT i A 2
min 12:1 max(y'B8 z') + MBS

- Non-smooth convex optimization problem (quadratic program)
- Equivalent to the dual problem

n
maxQZai - Z ajapylyt (2l T)

i=1 j, k=1

st. 0<yla; < gofori=1,...,nand ;aiylZO.

61

Linear SVM

- Boser et al. (1992)

. 071_ 1T i A 2
min ;ma}c(y'B8 z') + MBS

- Non-smooth convex optimization problem (quadratic program)
- Equivalent to the dual problem

n
maxQZai - Z ajapylyt (2l T)

i=1 j, k=1

st. 0<yla; < gofori=1,...,nand ;aiyl:&

- Solution: B* =Y el fz-(z) =Bz = Zajyj:cﬁm

[=1

61

Linear SVM

- Boser et al. (1992)

. 071_ 1T i A 2
min ;ma}c(y'B8 z') + MBS

- Non-smooth convex optimization problem (quadratic program)
- Equivalent to the dual problem

n
maxQZai - Z ajapylyt (2l T)

i=1 j, k=1

st. 0<yla; < gofori=1,...,nand ;aiyl:&

- Solution: B* =Y el fz-(z) =Bz = Zajyj:cﬁm
j=1 j=1
Complexity (training)

61

Linear SVM

- Boser et al. (1992)

. 071_ 1T i A 2
min ;ma}c(y'B8 z') + MBS

- Non-smooth convex optimization problem (quadratic program)
- Equivalent to the dual problem

n
maxQZai - Z ajapylyt (2l T)

i=1 j, k=1

st. 0<yla; < gofori=1,...,nand ;aiyl:&

- Solution: B* =Y el fz-(z) =Bz = Zajyj:cﬁm
j=1 j=1
Complexity (training)

- Memory: O(n?) to store XX T

61

Linear SVM

- Boser et al. (1992)

. 071_ 1T i A 2
min ;ma}c(y'B8 z') + MBS

- Non-smooth convex optimization problem (quadratic program)
- Equivalent to the dual problem

n
maxQZai - Z ajapylyt (2l T)

i=1 j, k=1

st. 0<yla; < gofori=1,...,nand ;aiyl:&

- Solution: B* =Y el fz-(z) =Bz = Zajyj:cﬁm
j=1 j=1
Complexity (training)

- Memory: O(n?) to store XX T

- Runtime: O(n3) to find o* 61

Linear SVM

- Boser et al. (1992)

. 071_ 1T i A 2
min ;ma}c(y'B8 z') + MBS

- Non-smooth convex optimization problem (quadratic program)
- Equivalent to the dual problem

n
maxQZai - Z ajapylyt (2l T)

i=1 j, k=1

st. 0<yla; < gofori=1,...,nand ;aiyl:&

- Solution: B* =Y el fz-(z) =Bz = Zajyj:cﬁm
j=1 j=1
Complexity (training) Complexity (prediction)

- Memory: O(n?) to store XX T

- Runtime: O(n3) to find o* 61

Linear SVM

- Boser et al. (1992)

. 071_ 1T i A 2
min ;ma}c(y'B8 z') + MBS

- Non-smooth convex optimization problem (quadratic program)
- Equivalent to the dual problem

n
maxQZai - Z ajapylyt (2l T)

i=1 j, k=1

st. 0<yla; < gofori=1,...,nand ;aiyl:&

- Solution: B* =Y el fz-(z) =Bz = Zajyj:cﬁm

j=1 j=1
Complexity (training) Complexity (prediction)
- Memory: O(n?) to store XX T - Primal: O(p) for (8*)Tz

- Runtime: O(n3) to find o* 61

Linear SVM

- Boser et al. (1992)

. 071_ 1T i A 2
min ;ma}c(y'B8 z') + MBS

- Non-smooth convex optimization problem (quadratic program)
- Equivalent to the dual problem

n
max22ai - Z ajapylyt (2l T)

i=1 j, k=1

st. 0<yla; < gofori=1,...,nand ;aiyl:&

- Solution: B* =Y el fz-(z) =Bz = Zajyj:cﬁm

J=1 j=1
Complexity (training) Complexity (prediction)
- Memory: O(n?) to store XX T - Primal: O(p) for (8*)Tz

- Runtime: O(n?) to find o* - Dual: O(np) for (a*)T X 61

Sommaire

Why machine learning ?

A brief zoo of ML problems

Nonlinear models: kernel methods

Algorithmic complexity recap

62

63

Non-linear mapping to a feature space

64

SVM in the feature space

- Training:

n
max 2 E o —
a€eR” =

n

max 2 E o —
acRn?
=1

¢:RP - H

Z ajaryyF (2T)

G k=1

3" gty (), S

j,k=1

65

SVM in the feature space

¢:RP - H

- Training:

iT gk
iré?R>52Zaz Z 17 aky a:J)

3,k=1
n
) s
max z;az ;104 oy (p(al), p(x*))x
1= J»

- Predict with the decision function

f8- () Za]g/mﬂ—
fo+(z Zajy (2)n

65

Kernel SVM

- Training:

max?Zai - Z ooty (d(a?), p(x*)) 2
=1

acR™
Ji k=1
n n
max 2 g o — E ajak,gﬂyk/;(:lr’.:l:]")
a€Rn 4
i=1 Gk=1

66

Kernel SVM

- Training:

max 2 Z o — Z Oéjakyjyk<¢(wj)a ¢($k)>7-l
i=1

a€R™
Jrk=1

n n
max 2 Z a; — Z ajozk,yiyk/v(ol x¥)
i=1

QGR"
k=1

- Predict with the decision function

for(@) = > i (d(2f), d(@))n
j=1

fa+(z) = Zajyj/.‘(ajj. x)
j=1

66

Kernel trick

- k may be quite efficient to compute, even if H is a very
high-dimensional or even infinite-dimensional space.

67

Kernel trick

- k may be quite efficient to compute, even if H is a very
high-dimensional or even infinite-dimensional space.

- For any positive semi-definite function k, there exists a feature
space ‘H and a feature map ¢ such that

k(z, a’) = (¢(z), (@) n

67

Kernel trick

- k may be quite efficient to compute, even if H is a very
high-dimensional or even infinite-dimensional space.

- For any positive semi-definite function k, there exists a feature
space ‘H and a feature map ¢ such that

k(z, a’) = (¢(z), (@) n

- Hence you can define mappings implicitely.

67

Kernel trick

- k may be quite efficient to compute, even if H is a very
high-dimensional or even infinite-dimensional space.

- For any positive semi-definite function k, there exists a feature
space ‘H and a feature map ¢ such that

k(z, a’) = (¢(z), (@) n

- Hence you can define mappings implicitely.

- Kernel trick: algorithms that only involve the samples through
their dot products can be rewritten using kernels in such a way
that they can be applied in the initial space without ever
computing the mapping ¢.

67

Non-linear mapping to a feature space

o L
) [
. f\ ¢
® ¥ T>371 Q:c%
N "N
e ‘
¢ o
L
2425 - R*=0 d(x); + P(x)2 — R*=0

2 /2
K(.’IZ CC/)_ :L'l xl _.I'2LE/2+ZC2£C/2
) - ZE%) 213'/22 — Y141 242
1

68

Linear

Polynomial

Gaussian

Min/max

69

Kernel ridge regression (KRR)

- Ridge regression in input space RP:

f,@(w) — mTB\ridge — wT (XTX+)\I)_1 XTy,
~———
pXp

70

Kernel ridge regression (KRR)

- Ridge regression in input space RP:

f,@(w) — mTB\ridge — wT (XTX+)\I)_1 XTy,
~———
pXp

- In a feature space of dimension R¢:
fa(z) = @(x) "B = ®(x)" (B(X) B(X) + \) ' &(X) Ty
dxd

=&(x) X)) (®(X)O(X) +A) "Ly

nxn

70

Kernel ridge regression (KRR)

- Ridge regression in input space RP:

f,@(w) — mTB\ridge — wT (XTX+)\I)_1 XTy,
~———
pXp

- In a feature space of dimension R¢:
fa(z) = @(x) "B = ®(x)" (B(X) B(X) + \) ' &(X) Ty
dxd

=&(x) X)) (®(X)O(X) +A) "Ly

nxn

- Ridge regression in sample space R™:

fa(@) =k (K+ A"y, &i=kiz,z'), K=k)

nxn

70

Complexity of KRR

fa(x) = k(K +)\I)_ly, ki = k(x, $i)7 K = k(mi, :cj)

- Computing K: O(pn?)

71

Complexity of KRR

fa(x) = k(K +)\I)_ly, ki = k(x, $i)7 K = k(mi, :cj)

- Computing K: O(pn?)
- Storing K: O(n?)

71

Complexity of KRR

fa(x) = k(K +)\I)_ly, ki = k(x, $i)7 K = k(mi, :cj)

- Computing K: O(pn?)
- Storing K: O(n?)
- Inverting K + XI: O(n?)

71

Complexity of KRR

fa(x) = k(K +)\I)_ly, ki = k(x, $i)7 K = k(mi, :cj)

- Computing K: O(pn?)

- Storing K: O(n?)

- Inverting K + XI: O(n?)

- Computing a prediction for one sample:

71

Complexity of KRR

fa(x) = k(K +)\I)_ly, ki = k(x, $i)7 K = k(mi, :cj)

- Computing K: O(pn?)

- Storing K: O(n?)

- Inverting K + XI: O(n?)

- Computing a prediction for one sample:
m Computing k: O(nd)

71

Complexity of KRR

fa(x) = k(K +)\I)_ly, ki = k(x, $i)7 K = k(mi, :cj)

- Computing K: O(pn?)

- Storing K: O(n?)

- Inverting K + XI: O(n?)

- Computing a prediction for one sample:

m Computing k: O(nd)
m Computing the products: O(n)

71

Sommaire

Algorithmic complexity recap

72

Method Memory Training time Test time
PCA O(p?) O(np?) O(p)
k-means O(np) O(npk) O(kp)
Ridge regression O(p?) O(np?) O(p)
Logistic regression O(np) O(np?) O(p)
SVM, kernel methods — O(np) O(n?) O(np)

73

Method Memory Training time Test time
PCA O(p?) O(np?) O(p)
k-means O(np) O(npk) O(kp)
Ridge regression O(p?) O(np?) O(p)
Logistic regression O(np) O(np?) O(p)
SVM, kernel methods — O(np) O(n?) O(np)

Things to worry about:

- Training time (can usually take place offline)

73

Method Memory Training time Test time
PCA O(p?) O(np?) O(p)
k-means O(np) O(npk) O(kp)
Ridge regression O(p?) O(np?) O(p)
Logistic regression O(np) O(np?) O(p)
SVM, kernel methods ~ O(np) O(n?) O(np)

Things to worry about:

- Training time (can usually take place offline)

- Memory requirements

73

Method Memory Training time Test time
PCA O(p?) O(np?) O(p)
k-means O(np) O(npk) O(kp)
Ridge regression O(p?) O(np?) O(p)
Logistic regression O(np) O(np?) O(p)
SVM, kernel methods ~ O(np) O(n?) O(np)

Things to worry about:

- Training time (can usually take place offline)
- Memory requirements
- Test time: prediction should be fast!

73

Techniques for large-scale ML

- Understand modern architecture, and how to distribute data /
computation

74

Techniques for large-scale ML

- Understand modern architecture, and how to distribute data /
computation

- Trade optimization accuracy for speed

74

Techniques for large-scale ML

- Understand modern architecture, and how to distribute data /
computation

- Trade optimization accuracy for speed

- Use the deep learning tricks

74

References i

@ Boser, Bernhard E, Isabelle M Guyon, and Vladimir N Vapnik
(1992). “A training algorithm for optimal margin classifiers”. In:
Proceedings of the fifth annual workshop on Computational
learning theory, pp. 144-152.

[@ Cessie, S Le and JC Van Houwelingen (1992). “Ridge estimators in
logistic regression”. In: Journal of the Royal Statistical Society
Series C: Applied Statistics 411, pp. 191-201.

8 Hoerl, Arthur E and Robert W Kennard (1970). “Ridge regression:
Biased estimation for nonorthogonal problems”. In:
Technometrics 121, pp. 55-67.

75

	Why machine learning ?
	A brief zoo of ML problems
	Dimension reduction: PCA
	Clustering: k-means
	Regression: ridge regression
	Classification: logistic regression and SVM
	Nonlinear models: kernel methods

	Algorithmic complexity recap
	References

